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ABSTRACT

We consider step detection and estimation using a multi-
scale wavelet analysis, based on the ability of a certain
discrete wavelet transform (DW'T) to characterize signal
steps and edges. This DWT, developed by Mallat and
Zhong, estimates the gradient at various smoothing lev-
els without downsampling in time. As first proposed by
Rosenfeld for edge sharpening, multiple scales are combined
by forming the pointwise product across scales. We show
that this approach is a non-linear whitening transformation,
and characterize the non-Gaussian pdf of the output. De-
tection curves are shown for parameterized sigmoidal step
change signals. Step location estimation performance is also
shown, with comparison to the Cramer-Rao bound in addi-
tive white Gaussian noise.

1. INTRODUCTION

Edge and step detection and estimation is a fundamen-
tal problem in many areas of signal and image process-
ing. A simple general approach, that works well at high
SNR, is gradient estimation. Many of the basic image edge
detection operators (e.g., Roberts, Prewitt, Sobel) reduce
in one-dimension to an FIR filter with response [-1, 0, 1].
More general extensions, so-called filtered derivative meth-
ods, combine smoothing with gradient estimation to reduce
noise effects. This results in classical detection and esti-
mation tradeoffs, e.g., between the level of smoothing and
the variance of the estimated step location. The problems
with the level of smoothing appropriate for gradient esti-
mation can be overcome to some extent by employing a
multi-scale analysis, i.e., combining results over multiple
levels of smoothing.

It is well known that wavelets may be used for singular-
ity detection [1]. This has been applied to edge detection
by Mallat and Zhong [2], putting earlier work of Canny and
others into the WT framework. Consider a continuous-time
wavelet () that consists of the first derivative of a smooth-
ing function u(t), given by ¥(t) = du(t)/dt. For a signal of
interest x(t) it is straightforward to show that [1]

Woa(t) — 2(t) + (sds‘;) (1) = s%(x su)(®), (1)

where us(t) = (1/s)u(t/s) and * denotes convolution, pro-
vided that ¥(t) is a valid wavelet with zero first moment.

Thus, for appropriate choice of u(t), Wsz(t) can be inter-
preted as a derivative of a local average of x(t) where the

degree of smoothing depends on scale s. The result is deriva-
tive estimation at various levels of smoothing.

We consider a scheme based on the ability of a certain
discrete wavelet transform (DWTT) to characterize the local
regularity of signals. In [2] Mallat and Zhong developed a
DWT based on a discrete-time approximation to u(t) us-
ing a cubic spline; implementation details are in [2]. Note
that this DW'T is dyadic in scale but not in time; there is
no downsampling of the filter outputs. The IR’s for the
first few scales are shown in Figure 1, and the resulting
frequency responses are shown in Figure 2. Note the lin-
ear regions in Figure 2 correspond to differentiation at the
various smoothing levels.

Hereafter we restrict our attention to Mallat and Zhong’s
DWT, although our results are general for a family of linear
derivative estimation filters. Let the DW'T input be x(n),
with jth scale output denoted

yi(n) = > hi(k)z(n k), (2)

where h;(n) is the IR of the jth DWT filter. In the following
we consider a multiscale detection and estimation strategy
based on the product of the DW'T outputs, given by

J1 Jj1
p() = T[] Wasatn) = [ s (). 3)
J=Jo J=Jo

This approach was first suggested (before the advent of
wavelets) by Rosenfeld [5], who employed dyadic smoothing
scales and where the smoothing filter taps were all equal to
one. This approach has recently been employed by Xu et
al for image denoising [7].

An example of (3) is given in Figure 3, depicting a time
series, its DW'T for the first three scales, and normalized
p(n) for jo =1 and j1 = 2 and 3. The signal is two-valued
in white Gaussian noise. The peaks in the DWT at vari-
ous scales correspond to the edges. Because the peaks align
across the first few scales, the product p(n) exhibits corre-
sponding peaks. Peaks do not align across arbitrarily high
scales because neighboring peaks interfere due to lengthen-
ing filter responses. The peaks in p(n) are generally well
pronounced, except for those corresponding to the isolated
impulses between n = 400 and 450 in the original time se-
ries, where smoothing leads to weakened response at the
higher scales. Peaks in Figure 3e are generally positive go-
ing because of the even number of products, whereas those
in Figure 3f are bipolar and preserve the edge up/down di-
rection information. In the following we develop properties
and analyze behavior of p(n).



2. CROSS-SCALE CORRELATION

In this section we consider the cross-correlation between
outputs of the DWT. We assume that z(n) is real-valued
iid with correlation function E[z(n)z(n + m)] = o28(m).

Then
By () =0 301 ()

Thus, the correlation coefficient between DWT outputs is
given by

> hi(k)h (k)
s W) S, R

and the joint covariance matrix of the DW'T outputs at time
n has (4, j) element given by

Oy = 0% 37 Rk} (). (©)

These relations are easily calculated for the specific values
of the FIR DWT'T filters h;(k). Correlation coefficients r;;
are shown in Table 1 for ¢,5 = 1,---,5.

(5)

Tijg =

1.0000 | 0.5345 [ 0.2097 | 0.0759 | 0.0270
1.0000 | 0.6444 | 0.2791 | 0.1074

1.0000 | 0.6787 [ 0.3019

1.0000 | 0.6868

1.0000

Table 1: Correlation coefficients for DW'T outputs y;(n).

3. A NONLINEAR WHITENING TRANSFORMATION

Let pr(n) = y1(n)---yx(n) be the Kth product of the
outputs of the DW'T, corresponding to jo = 1 and j1 = K
in (3). For simplicity in the following we restrict ourselves to
jo = 1, but the extension to arbitrary jo is straightforward.
For z(n) zero-mean Gaussian, we find the autocorrelation
of px(n) as follows. Consider

Tore (T) = Elpre (n)px (n +7)] (7)

= B[O rutt)ztn —1)
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=> h(h)-
x E|z (n—ll)---x(n—lK) (n+7’—m1)--- (n+T—mK)].

The expectation is a (2K )th joint moment that reduces to
asum of 1 X 3 X -+ x (2K — 1) terms, where each term
is composed of appropriate products of r;;(0) and ry (1),

defined as
i (T Z hi(Dh (1 + 1) (R)

For example, for K =2 the expectation in (7) reduces to 3
terms, and using the whiteness of z(n) we have

T (T) = 05 [rT2(0) + 111 (T)roa(7) + 721 (T)r1a(7)]. (9)

Similarly, for K = 3, the expectation reduces to a sum of
15 product terms in 7i; (7).

We note that the case of x(n) non-Gaussian can be han-
dled similarly by expressing the moment in (7) in terms of
cumulants and exploiting the assumed iid nature of z(t).
This will also involve higher-order analogs of (8).

For Mallat’s DWT 7y, (m) may be calculated for var-
ious cases, although the number of terms grows quickly
for K > 3. Plots of 7p,(7)/7p,(0) and rp;(7)/7rp;(0) are
shown in Figure 4. rp,(7) exhibits a strong zero-lag peak
with small values elsewhere. This effect becomes more pro-
nounced as K is increased, as confirmed by simulations.
Despite both the temporal dependence in each of the DW'T
time series yx(n), as well as the cross-correlation between
these outputs, px (n) is effectively whitened for K > 3. This
is intuitively apparent from Figure 2, because the time do-
main product corresponds to convolution in the frequency
domain.

4. DETECTION

Although it is whitened with respect to its second-order
statistics, p(n) is in general distinctly non-Gaussian. How-
ever, determination of the first-order pdf is not straight-
forward even with x(n) Gaussian, except when K = 2
(e.g., see [3, sect. 2.3]). For third or higher order prod-
ucts we must resort to numerical techniques, such as non-
parametric kernel-based pdf estimation. Figure 5 shows
estimated pdf’s with z(n) white Gaussian for two cases,
K = 2 (top) and K = 3 (bottom). Cauchy and unit-
variance normal pdf’s are shown for reference. Note the
skewness in the K = 2 case, due to the positive correla-
tion between yi1(n) and y2(n), and because K is even. In
this case the positive tail is heavier than Cauchy, showing a
strong impulsive nature in pa(n) on the positive side, with
a much lighter tail on the negative side. In the K = 3
case the pdf is symmetric with tail behavior heavier than
Gaussian but lighter than Cauchy. An alternative point
of view is to regard px(n) as an instantaneous estimate of
a cross-correlation. For example, ps(n) corresponds to a
triple-correlation; we immediately conclude that if z(n) is
zero-mean Gaussian then in this case E[ps(n)] = 0.

Figure 6 shows detection results, where detection is de-
clared by comparing |ps(n)| with a threshold for each 7. The
threshold was obtained from the estimated pdf for ps(n),
and set to achieve Py, = 0.001. Three signals were used;
two were based on a sigmoidal step model given by

s(n) =

mao + my exp{—a(nT —neT — 1)}
1+ exp{—a(nT —neT —7)} ’

(10)

where m1 and me are the signal levels before and after
the step, T' is the sampling interval time, parameter « de-
termines the rise time, and the step occurs (in continuous
time) at noT + 7. Here 7 is uniformly distributed in [0, 7],
modeling the effects of time quantization via sampling. The
SNR is defined locally as

. 2
sNR = (2= m) Ugml) : (11)

where o2 is the noise variance, Two values were used, o =
4.4, and « = 1, corresonding to a fast and slower step rise-



time. In both cases m1 = 0 and T' = 1, and mg2 was adjusted
to achieve the desired SNR. The third signal in Figure 6 was
an ideal step function (a rise-time of 1 sample), from m; = 0
to ma, where ma is set to achieve the desired SNR. As we
would expect, slowing rise-time results in poorer detection
performance.

5. ESTIMATION

Next we consider estimation of step change location. This
assumes that a change has occured in the observation inter-
val, hence there is no detection problem. Reza and Dorood-
chi [4] have derived CRB’s for the case of sigmoidal step
change as in (10) in additive white Gaussian noise, where
the SNR is defined as in (11). The CRB depends primarily
on data local to the change time, in a neighborhood approx-
imately given by |n — ng| < 2.5¢,, where ng is the change
time and t, is the step change rise time (time to change
from 10% to 90% of the step height).

Figure 7 depicts the theoretical CRB, as well as experi-
mental MSE, for two methods. The two estimation methods
are first, based on ps(n), and second, based on a simple gra-
dient estimator with FIR given by [-1, 0, 1]. The sigmoidal
function was generated with m; = 0, T' = 1, and o = 4.4,
corresonding to a rise-time of about 47" (see [4]). The step
height mo was set to achieve the desired SNR. The simple
gradient estimator has essentially no smoothing, whereas
p3(n) exploits multiple smoothing levels. At low SNR the
benefit of the smoothing is evident as the DW'T method out-
performs the simple gradient estimator by about 5 dB. At
high SNR both methods are time-quantization error domi-
nated. The simple gradient approaches the minimum vari-
ance of 1/12 of a sampling time, which arises due to the uni-
form distribution of the sampling phase error. The DW'T
method approaches 1/2, reflecting the effects of smoothing
via the increased variance of the estimate.

Changing a changes the effective rise-time of the sig-
moidal signal. Decreasing a creates a slower rising step.
This results in a shift upward of the CRB as the step lo-
cation is inherently more difficult to estimate. Repeating
the experiment in Figure 6 with lower a results in a shift to
the right as higher SNR is needed to obtain the same per-
formance; while the general behavior of the curves is the
same.

6. CONCLUSIONS

We have analyzed a method for nonlinearly combining mul-
tiscale wavelet outputs for detecting and estimating steps
and edges. The smoothed gradient DW'T developed by Mal-
lat provides a wavelet framework for this approach, as this
DWT is dyadic in scale but not in time. The cross-scale
product approach was originally proposed by Rosenfeld for
edge sharpening. Despite its non-linear nature the cross-
scale product is whitening, but the resulting noise pdf is
distinctly non-Gaussian and generally heavy tailed. The
pdf was characterized and detection results presented pa-
rameterized by step rise-time. Location estimation was also
characterized and compared to the Cramer-Rao bound in
white Gaussian noise. The results indicate tradeoffs possi-

ble in exploiting multiple smoothing levels when the most
appropriate single smoothing level is not known a priori.
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Figure 1. Impulse responses of the DWT for the first five
scales.
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Figure 2. Frequency responses of the DW'T for six scales.

20 T T T T T T T T T

(@)
S

-20 L L L L L I I I

.
20 50 100 150 200 250 300 350 400 450 500
T T T T T T T T T
Z o WWW/\/WWW
~20 f I I I L I . . .
200 50 100 150 200 250 300 350 400 450 500
T T T T T T T T T

©)
S

PROBABILITY OF DETECTION
o
e <
T

~20 i . . | . | | | |
20 50 100 150 200 250 300 350 400 450 500
T T i T T T 7 7 7
e OW\H\W‘M’\M\A
~20 i . . | . . | | |
10 50 100 150 200 250 300 350 400 450 500
7 7 7 T T 7 7
T o JUL M -
1 . . . . . . | | |
10 50 100 150 200 250 300 350 400 450 500
T 7 T 7 T T 7 7

o I T
B Y I MY (S

0 50 100 150 200 250 300 350 400 450 500
Figure 3. DWT example showing (a) time series, (b)-(d)
first 3 scales of the DW'T, (e) pa(n), (f) ps(n).
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Figure 4. Theoretical normalized correlations of pz(n) and
p3(n).
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Figure 5. Estimated first-order pdfs of pz(n) and ps(n),
with normal and Cauchy also shown.
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Figure 6. Probability of step detection using ps(n) in white
Gaussian noise.
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Figure 7. MSE’s and theoretical CRB for step change loca-
tion estimation.




