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ABSTRACT

Discriminative training is effective in enhancing robustness
for recognition tasks characterized by high confusion rates.
In this paper, we apply discriminative training to different
components of a spelled word recognizer to improve recog-
nition accuracy among confusable letters. First we weighted
the HMM states to emphasize the letters’ discriminant part.
The training achieved a 17% decrease in unit (letter) error
rate when the search was performed with an unconstrained
grammar. Then we designed a new algorithm that relies
on discriminative training to adapt the grammar transition
probabilities and the language weight. This method uses
acoustic information to provide a tight coupling between the
acoustic and language models. Experimental results showed
the state weighting followed by the adaptation of a bigram
language model reduced by 11% the total unit errors and by
12% the unit errors among the E-Set of the English alpha-
bet.

1. INTRODUCTION

Spelled word speech recognition is an interesting topic
linked to many applications. The main difficulty is related
to confusable letters e.g., E-Set (b,c,d,e,g,p,t,v,z). In this
paper, we report results achieved with SmarTspelL

TM1 [1]
[2], the Panasonic spelled word recognizer, and focus on op-
timization of the first-pass decoding. At the acoustic level
we attack the problem of confusable letters with discrimina-
tive training (DT) techniques. In particular, we estimate the
HMM state weights using a minimum string error objective
leading to the Discriminative State Weight (DSW) adapta-
tion. By employing DT at the grammar adaptation level we
produced a robust estimation of the language model and the
language weight. This method has the advantage of taking
into account both the training vocabulary and the underly-
ing acoustic behavior, so that the grammar will be tailored
to the acoustic models used.

1SmarTspelL
TM

is a trademark of Panasonic Technologies, Inc.

2. BACKGROUND AND RELATED WORK

DT aims to minimize theexpected error ratethrough a
discrimination enhancement between the correct and the
wrong decoded candidates. The optimization relies on the
General Probabilistic Descent (GPD) algorithm, explained
in [3] where experiments were performed on isolated E-
Set letters and connected digit recognition. In continuous
recognition tasks an N-Best competing string objective is
generally used for string error minimization [4]. DT tech-
niques have interesting interactions with state-weighting
methods employed to highlight the salient section of a word
[5]; these two methods can be jointly used to improve the
robustness of the acoustic models [6]. In [7] a simple tech-
nique is introduced to train the state-weighted models, with
experiments on isolated word and connected digit recogni-
tion. Regarding the estimation of robust language models
on sparse data a well known method isbacking-off[8] in
order to predict the probability of unseen context using the
lower order probability. In this paper we apply discrimina-
tive methods for continuous letters recognition introducing
a multilevel optimization for both the acoustic and the lan-
guage models.

3. PROBLEM AND DATA DESCRIPTION

SmarTspelL
TM

is a multi-pass spelled word recognition sys-
tem. We are interested in the first-pass decoding, where an
HMM alignment is accomplished with a bigram language
model. The front-end analysis is performed on a 20 ms win-
dow with frame rate of 10 ms by computing 18 parameters:
energy, delta-energy, 8 cepstral coefficients and 8 delta cep-
stral. The acoustic models are whole letter HMMs, with a
left-right topology and 3 states for the silence, 12 for the
“W”, and 8 for all the other letters. The experiments were
performed on the spelled name part of OGI [9], recorded on
telephone bandwidth of 8 kHz, that we partitioned into three
sets, such that each speaker appears in only one set: a train-
ing set with 1222 calls, a validation set with 558 calls and a
test set with 491 calls. Each set contains several examples
of each of the 26 possible letters. We completed the train-



ing set with some utterance from the Macrophone database
[10], to cover the examples of infrequent letters. The base-
line models were trained with Baum-Welch maximum like-
lihood re-estimation and the bigram language model was
estimated with a backing-off algorithm on the training set
transcriptions. Therefore the experiments were completely
speaker independent.

4. DISCRIMINATIVE TRAINING

Consider an observationX belonging to one of the classes
Ci; i = 1; 2; � � � ;M . A classifier defined by the parameters
� associates with each classCi a discriminative function
gi(X ; �) and applies the decision rule:

C(X) = Ck; k = argmax
i

gi(X ; �):

In continuous speech recognition the observationX is a
vector of short term measurements of the spelled utterance,
and discriminative functions commonly employed are the
log likelihood (score) of the N-Best strings provided by the
decoding algorithm [4]. DT directly optimizes the classi-
fier’s expected error rate using gradient descent search. For
anX belonging to the classCi, define themisclassification
measurewith:

d(X ; �) = �gi(X ; �) + log

8<
: 1

M � 1

X
j;j 6=i

egj(X;�)�

9=
;

1

�

;

where� > 0. Then, define theloss functionwith l(X ; �) =
f(d(X ; �)) wheref() is a sigmoid function. An important
result of DT theory is that theexpected lossE fl(X;�)g
is a continuous measure asymptotically approaching the ex-
pected error rate as� ! 0. The GPD algorithm minimizes
the expected loss through a steepest descent procedure by
computing�t+1 = �t � �trl(X ; �t). Therefore GPD
asymptotically optimizes the expected error rate as well.
Moreover, the corrective termrl(X ; �t) is related to the
discriminative function gradientrgi(X;�) [7], that is com-
puted in the next sections for the two training algorithms.

4.1. HMM State Weighting

The basic idea behind state-weighting is that each portion of
a speech utterance has different importance for the classifi-
cation process. The method used to exploit this information
consists of the assignment of a weight to each HMM state
representing the importance of the emitted frames. Consider
the kth best decoded stringSk = (sk1 ; s

k
2 ; � � �) as a sequence

of HMMs, let (qk1 ; q
k
2 ; � � � ; q

k
T ) be the state sequence and

L(qkt ; xtjq
k
t�1) the state-score of observingxt during the

transitionqkt�1 ! qkt . Weighting the HMM states means
applying a weightwq to each state-score. We trained the

state-weights with a minimum string error objective by us-
ing the weighted state-score associated with the stringSk as
a discriminative function:

g(X;Sk) =

TX
t=1

wqkt
L(qkt ; xtjq

k
t�1):

We constrained the weights of the modelMi, havingNi

states, with
PNi

q=1 wq = Ni as in [7], and we applied the
GPD search in the transformed spacefwrg defined as in [3]
by:

wr = Ni

ewrPNi

q=1 e
wq

:

The discriminative function derivatives with respect to the
transformed state weights are:

@g(X;Sk)

@wr

= wr

(
T k(r;X) +

1

Ni

NiX
q=1

wqT
k(q;X)

)
;

whereT k(r;X) =
P

t:qkt �r
L(qkt ; xtjq

k
t�1) is thecumula-

tive scorefor states along the Viterbi path associated with
the stringSk. This term has to be computed for each HMM
state for the correct string and for the wrong competing
strings with an N-Best search.

4.2. Discriminative Grammar Training

The language weight has a strong influence on the recog-
nition performance because it provides the search algorithm
with knowledge about the relative reliability of the language
model with respect to the acoustic models. In most current
approach the language weight is sub-optimally estimated by
means of heuristic tuning on the test set. In this section we
derive a GPD-based algorithm to adapt the language weight
and we extend it to the grammar transition probabilities. Let
us define a stochastic grammar with a graphG(N ;A) where
the nodesN represent the context and the arcsA the tran-
sitions with which are associated the HMMs. LetW(A)
be the word emitted andP(A) the probability associated
with each transition. Consider the kth best decoded string
Sk = (sk1 ; s

k
2 ; � � �) where theski 2 A are the grammar tran-

sitions taken during the utterance decoding. We constrain
the transition probabilitiespt with:X

t2O(n)

pt = 1;

whereO(n) � A is the set of transitions exiting the node
n. Consider now a transitiont 2 O(n), we apply the GPD
search in the transformed spacefptg defined by:

pt =
eptP

r2O(n) e
pr
:



We assume the discriminative functions are the total score
of the stringsSk, expressed by:

g(X;Sk) =
X
t2Sk

L log pt +At;

whereL is the language weight andAt is the acoustic
score provided by the HMM associated with the transitiont.
Moreover we assume that the acoustic scoresfAtg are in-
dependent from the grammar transition probabilitiesfptg.
From the derivatives chain rule we achieve:

@g(X;Sk)

@pt
=
X
s2A

@g(X;Sk)

@ps

@ps

@pt
:

Consider again a transitiont 2 O(n), we can write:

@ps

@pt
= (ps�s;t � pspt)I(s 2 O(n));

where�s;t is the Kronecker delta function and I() is the in-
dicator function. From previous assumptions we can derive:

@g(X;Sk)

@ps
=

L

ps
�k
s ;

where each�k
s =

��r 2 Sk : r = s
�� counts how many times

the transitions has been taken during the stringSk. From
previous expressions we achieve:

@g(X;Sk)

@pt
= L

8<
:�k

t � pt
X

r2O(n)

�k
r

9=
; :

We called this algorithm Constrained Discriminative Gram-
mar Training (C-DGT) since we constrained the grammar
probabilities. For the language weight adaptation we per-
form an unconstrained search so the discriminative function
derivative is simply:

@g(X;Sk)

@L
=
X
t2Sk

log pt:

Note that that the two previous terms are also related to
the acoustic models since the stringSk is achieved with an
alignment of the spoken utterance on the grammar we want
to adapt. This method gave the best results when transition
probabilities and the language weight were adapted at the
same time.

5. EXPERIMENTAL RESULTS

The following results were achieved by re-estimating the
baseline acoustic and language models on the training set.
To carry out the state weights adaptation the cumulative
scores for the correct string were computed with a forced
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Figure 1: Acoustic model enhancement: string recognition
with loop grammar decoding vs. expected loss.

alignment on the utterance labels. For the competing
strings, an N-Best decoding was performed with a uniform
loop grammar that leaves the search unconstrained and pro-
duces a bigger variety of competing strings. The recogni-
tion performance achieved with the loop grammar decoding
also provides a reliable measure of the acoustic enhance-
ment of the state weighted models. Where possible, we
used an exhaustive search useful for smoothing the gradient
convergence. During the GPD search we employed a lin-
ear decreasing step size applied to the normalized gradient,
with maximum iteration as stopping criteria. Fig. 1 shows
the string recognition rate achieved with the loop grammar
compared with the expected loss over 60 GPD iterations.
Although the training is performed with a string error rate
objective, for the first-pass decoding we are interested in
the unit performance since it can drastically affect the cor-
rect string retrieval during post-handling passes. Table 1
shows the improvement in term of unit error reduction rate.
The state weight models enhancement, as measured by the
loop grammar decoding, is not completely reflected in the
decoding performed with the baseline bigram. To deal with
this problem we matched the language model and the lan-
guage weight with the new acoustic models by performing
a C-DGT adaptation. The gradient descent terms were com-
puted with an N-Best search on the bigram network for the
competing strings, and with a forced alignment on the utter-

Train set Test set

Error reduction 21.1% 17.3%

Table 1: Unit error reduction rate for the DSW adaptation
measured with a loop grammar decoding.



Baseline DSW DSW+C-DGT

Insertion rate 1.94% 1.30% 2.03%
Deletion rate 1.02% 1.33% 1.11%

Substitution rate 12.45% 11.88% 10.57%
Unit error rate 15.41% 14.51% 13.71%

Table 2: Unit performance for the DSW and for the DSW
followed by the C-DGT adaptations.

ance labels, weighted with the bigram probabilities, for the
correct string. Moreover we used two different step sizes,
10 times smaller for the transition probabilities than for the
language weight adaptation, to better control the gradient
convergence. The adaptation provided an optimal value for
the language weight of 14.7 when an exhaustive search per-
formed on the test set gave a value close to 15. Table 2 re-
ports the unit performance achieved with bigram decoding
for the baseline models, state-weighted models, and state
weighted models with the C-DGT adapted bigram. No-
tice that the DSW reduced the insertion and the substitution
rates at the expense of the deletion rate, and the C-DGT re-
duced the deletion and the substitution rates at the expense
of the insertion rate. By serializing the two adaptations we
diminished the negative effects on the insertion and deletion
rates and we increased the improvements on the substitu-
tion rate. The overall improvements are shown in Table 3.
Moreover we obtained a remarkable improvement of 12%
for the unit error among the E-Set letters. To illustrate the
robustness of this estimate we note that it provide unit per-
formance similar to a backing-off bigram estimated exclu-
sively on the test set.

DSW DSW+C-DGT Total

Error reduction 5.8% 5.5% 11%

Table 3: Unit error reduction rate for the DSW and for the
DSW followed by the C-DGT adaptations.

6. CONCLUSIONS

In this paper, we successfully applied discriminative train-
ing to the specific task of spelled word recognition. The
acoustic model improvements are consistent with previous
results in discriminative training for continuous recognition
tasks. Moreover, we introduced the discriminative adapta-
tion of language model and language weight and we showed
how the multilevel approach profit from improved acoustic
models. Note that the C-DGT adaptation was carried out us-
ing training data only. A disadvantage of this method is the
high computational cost and the need for a corpus of spo-

ken data which well characterizes the language model. By
serializing the acoustic models and the grammar adaptation
we ended up with high unit performance for the first-pass
decoding: 86.3 unit accuracy and 88.3 percent correct. For
further improvements it will be interesting to employ dis-
criminative methods at the front-end and in the later search
passes.
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