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ABSTRACT

This paper investigates the use of aggregation as a means of im-
proving the performance and robustness of mixture Gaussian mod-
els. This technique produces models that are more accurate and
more robust to different test sets than traditional cross-validation
using a development set. A theoretical justification for this tech-
nique is presented along with experimental results in phonetic clas-
sification, phonetic recognition, and word recognition tasks on the
TIMIT and Resource Management corpora. In speech classifi-
cation and recognition tasks error rate reductions of up to 12%
were observed using this technique. A method for utilizing tree-
structured density functions for the purpose of pruning the aggre-
gated models is also presented.

1. INTRODUCTION

Mixture Gaussian models are typically trained using a procedure
that combines supervised and unsupervised training. Supervision
is provided through the class labels of the training data which
are known during training. In contrast, the weights which deter-
mine how much each data point contributes to the training of the
mean and covariance of each individual mixture component are
not known when training begins, but rather are determined during
the training process in an unsupervised manner. The algorithms
used to determine these weights, such as theK–means clustering
algorithm and the Expectation-Maximization (EM) algorithm, do
not guarantee a globally optimal solution. These algorithms of-
ten converge to a locally optimal solution, where the exact local
optimum that will be reached is highly dependent on the initial-
ization of the unknown weights at the beginning of the training
process. As a specific example of this phenomenon, word recogni-
tion accuracies on the Resource Management task were obtained
from 24 trials of training mixture Gaussian models by randomly-
initialized K–means clustering followed by EM iterations. The
average word error rate was4:55%, with a maximum, minimum
and standard deviation of4:83%, 4:33%, and0:127, respectively.
The error rate reduction achieved in traversing from the worst trial
to the best trial is 10.4%. In light of this variation, one may ask:
What is a good strategy for using the results on development data
to choose which models to use on an independent test set?

1This material is based upon work supported by NSF under Grant No.
IRI-9618731 and by DARPA under Contract N66001-96-C-8526, moni-
tored through Naval Command, Control, and Ocean Surveillance Center.

In the past, many have simply chosen the model training trial that
performs the best on the development data, i.e., cross-validation.
One problem with this strategy is that noise on the development
data contributes a random component to the performance. As a
result, better performance on the development set may not indi-
cate models which are better matched to the true underlying dis-
tribution of the data. Instead, it may only indicate that the models
are superficially better matched to the idiosyncrasies of the de-
velopment set. As an example of this, TIMIT phonetic recogni-
tion accuracies were calculated on development and test sets for
24 independently trained models, using different random initial-
izations in theK–means clustering. The correlation between de-
velopment set and test set accuracy was indeed weak (correlation
coefficient 0.16), and in this case the simple “pick-the-best-on-
development-data” cross-validation strategy was particularly dis-
appointing since the trial performing best on the development set
performed worst on the test set. A second disadvantage of simple
cross-validation is that computation is wasted, since the results of
only one training trial are kept, while the models from the other
trials are thrown away [1].

To counter the problems discussed above, an algorithm is needed
which produces a mixture density function which can be proven to
yield better classification accuracy, on average, than any randomly
initialized density function trained using standard techniques. At
the very least, it is desirable to show the new algorithm can reduce
the value of some error function which is strongly correlated with
classification accuracy. Aggregation is a technique which meets
this criterion [1]. Aggregation improves the performance of clas-
sifiers which exhibituncertaintyor instability during their train-
ing phase. Aggregation has been applied to a variety of types of
predictors and classifiers. For example, Breiman has shown the
effectiveness of a specific type of aggregation known asbagging
(or bootstrap aggregating) on linear regression predictors and on
classification trees [2]. In [2], Breiman indicates aggregation could
also be used on probabilistic classifiers.

In this paper, Breiman’s work is extended by proving, both theo-
retically and empirically, how aggregation can be used to improve
the performance and robustness of probabilistic classifiers. The
theoretical development in Section 2 demonstrates that the mix-
ture density function produced by aggregation produces a smaller
error function than the average of the error functions of the individ-
ual models used in the aggregation. The theoretical advantages of
aggregation are demonstrated empirically in Section 3 on speech
classification and recognition tasks which utilize mixture Gaussian
density functions.



2. THEORY

Aggregation of probabilistic classifiers is performed by averaging
the outputs of a set of independently trained classifiers. The proof
that follows will demonstrate that an aggregate classifier is guar-
anteed to exhibit an error metric which is equal to or better than
the average error metric of the individual classifiers used during
aggregation. Though the empirical evidence presented in this pa-
per uses only mixture Gaussian classifiers, this proof is valid for
any type of probabilistic classifier. This proof is also completely
independent of the test data being presented to the classifier. Thus,
the method is robust because it improves performance regardless
of the test set being used.

To begin, assume a set ofN different classifiers have been trained.
In most of the experiments in this paper, multiple classifiers are
generated from the same data set by using different random ini-
tializations in theK–means clustering prior to EM training of the
mixtures. However, the proof does not depend in any way on how
the classifiers are generated. This set will be called� and can be
represented as:

� = f~'1(~x); ~'2(~x); : : : ; ~'N (~x)g (1)

Within �, each classifier~'n(~x) takes an observation vector~x as
its input. The underlying class that~x belongs to will be defined
asc(~x). To classify~x, each~'n(~x) contains a probability density
function for each of theD different classes from which~x might
be drawn. Each classifier~'n(~x) outputs aD dimensional vector
containing thea posterioriprobabilities of~x belonging to each of
theD classes. This output vector for~'n(~x) can be represented as
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In order to evaluate the performance of a classifier, an appropriate
metric must be defined. Let~y(~x) be aD dimensional vector which
indicates the reference class, or “correct answer,” through a binary
representation. That is,

~y(~x) = [y1(~x); y2(~x); : : : ; yD(~x)]
T (3)

where

yd(~x) =

�
1 if c(~x) = d
0 otherwise

(4)

Ideally, a classifier’sa posterioriprobability for the correct class
should be as close to 1 as possible while all of the incorrect classes
should havea posterioriprobabilities as close to 0 as possible. The
error metric used in this proof is the squared distance between the
classifier’s output and the “correct answer.” Thus, theerror when
input~x is presented to thenth classifier is defined as

en(~x) = k~y(~x)� ~'n(~x)k
2 (5)

This error can be expressed as

en(~x) =

DX
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2 (6)

Using the error metric defined above, the mean error over allN
classifiers in� for an input vector~x is
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For notational ease, the remainder of this development will drop
the explicit dependence on the input vector~x. It should be under-
stood that the analysis proceeds identically given any input vector.
Continuing, the average error of theN classifiers expands to
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The aggregate classifier,~'A, simply averages the outputs of allN
classifiers in�. This is expressed as

~'A =
1

N

NX
n=1

~'n (9)

The error for the aggregate classifier model is

eA = k~y � ~'Ak
2 =
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By substituting in the definition of~'A(~x) from (9) the error of the
aggregate classifier can be rewritten as
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By comparing the expressions in (8) and (11), it can be seen that
eA will be less than or equal toe if 
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In fact, this condition is always true for any arbitrary vector be-
cause it is a special case of the Cauchy–Schwarz inequality. Given
any two vectors~a = [a1; a2; : : : aN ]

T and~b = [b1; b2; : : : bN ]
T ,

then by the Cauchy–Schwartz inequality�����
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Now let bn = 1 for all n so that
PN

n=1
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which is the desired result. Note that equality holds in (12) only if
the'n;d matrix is constant along each rown, i.e., every classifier
is giving exactly the samea posterioriprobabilities. Thus, in prac-
tical situations with classifiers that produce different probabilities,
the inequality becomes strict.

This derivation proves that, forany input token~x, the erroreA of
the aggregate classifier created from the classifier set� is always
smaller than the average errore of theN individual classifiers in
�, provided that theN classifiers do not all produce the samea
posterioriprobabilities.



3. EXPERIMENTS

Overview: The effectiveness of aggregation will be demonstrated
with results obtained on three different tasks: phonetic classifica-
tion, phonetic recognition, and word recognition. Each experiment
utilizes theSUMMIT [3] recognition system. This system uses mix-
ture Gaussian acoustic models to score segment-based phonetic
units. For each experiment, 24 individual sets of acoustic models
were independently trained. These 24 individual trials were then
used to create sets of independent models for each aggregation
trial. Thus, the models from 24 individual training trials are used
to create 12 2–fold aggregation trials, 8 3–fold aggregation trials,
etc., until only one trial of 24–fold aggregation is performed.

Phonetic Classification: For the task of phonetic classification,
theSUMMIT system was tested on the TIMIT corpus using context-
independent phonetic segment models. The classifier and mea-
surements used for these experiments are similar, but not identi-
cal, to those described in [4]. The classifier used a 71 dimensional
feature vector to model the segments of 61 different phones. The
feature vector contains MFCC and energy averages and deriva-
tives, duration, zero-crossing rate and fundamental frequency. The
classifier uses mixtures of full-covariance Gaussian density func-
tions. In Table 1, there are two different context-independent pho-
netic classification (CI-PC) conditions. In CI-PC1, each individual
training trial requires a minimum of approximately 500 training
tokens for each Gaussian kernel. In CI-PC2, only 300 tokens are
required thus allowing more mixture components per model.

Phonetic Recognition: For the phonetic recognition task,SUM-
MIT was tested on the TIMIT corpus using context-independent
phonetic segment models and context-dependent diphone bound-
ary models. A 77 dimensional feature vector is used to model the
segments of 61 different phonetic units. The 77 dimensions are pri-
marily composed of averages and derivative of MFCC’s and the to-
tal energy. For each segment model, a diagonal Gaussian mixture
is created using a maximum of 50 Gaussian kernels. A 50 dimen-
sional feature vector is used to model the boundaries for each of
983 diphone units. This feature vector contains MFCC and energy
measurements taken from regions surrounding each boundary. For
each boundary model a diagonal Gaussian mixture is created using
a maximum of 50 Gaussian kernels. All models were trained on
a 462 speaker training set. Phonetic recognition accuracies were
computed on both a 50 speaker development test set (400 utts) and
on the 24 speaker core test (192 utts). The recognizer used for
these experiments is described in detail in [3].

Word Recognition: For the word recognition task,SUMMIT was
tested on the DARPA Resource Management corpus. The recog-
nizer used the same measurement set as the TIMIT phonetic rec-
ognizer used above. The phonetic unit set contained 67 phonetic
units instead of 61, and the diphone unit set contained 558 diphone
units instead of 983. Each segment model contained a maximum
of 100 Gaussian kernels while each boundary model contained a
maximum of 50 Gaussian kernels. To handle words, the system
utilized a pronunciation network which accounted for multiple al-
ternative pronunciations for each word. The system used the stan-
dard word pair grammar provided for the task (perplexity 60). The
system was trained on all 120 speakers in the full training set (4400
utts) and tested on all 40 speakers in the full test set (1200 utts).

Results: A summary of the results on the three tasks is presented
in Table 1. This table shows the average accuracy ofN -fold aggre-

Average Error Rate (%) %
Test M=24 M=6 M=1 Error

Task Set N=1 N=4 N=24 Reduct.

CI-PC1 dev 21.2 20.0 19.6 7.1
CI-PC1 core 22.1 20.7 20.2 8.3
CI-PC2 core 23.2 21.3 20.4 12.0

CD-PR dev 28.1 27.3 27.0 3.6
CD-PR core 29.3 28.4 28.1 4.0

CD-WR test 4.5 4.2 4.0 12.0

Table 1: Average accuracy of M trials of N–fold model aggrega-
tion for the tasks of context-independent phonetic classification on
TIMIT (CI-PC1 and CI-PC2), context-dependent phonetic recog-
nition on TIMIT (CD-PR), and context-dependent word recogni-
tion on Resource Management(CD-WR).
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Figure 1: The effect of aggregation on the TIMIT context-
dependent phonetic recognition task on the development set.

gation overM independent trials on the three different tasks. As
can be seen, aggregation improves accuracy of the acoustic models
in all three cases. For phonetic classification, there are two differ-
ent conditions labeled CI–PC1 and CI–PC2. CI–PC2 used more
mixture components per class than CI–PC1, thus giving CI–PC2
the greater possibility of overfitting the training data. This is con-
firmed by the fact that CI-PC2 performs worse on average than
CI-PC1 for 1-fold aggregation. However, the damaging effects of
overfitting in CI-PC2 are largely overcome when multiple models
are aggregated. For 24-fold aggregation, CI-PC2 achieves compa-
rable performance to CI-PC1. Similarly, the CD-WR models use
more mixture components than the CD-PR models, and likewise
show a larger reduction in error rate using aggregation. These re-
sult indicates that aggregation improves robustness to sources of
overfitting. Thus, when aggregation is used, it is not so impor-
tant that there be a perfect balance between fitting and smoothing
the training data on each model training trial. Instead, one can err
somewhat on the side of overfitting, and aggregation will appro-
priately smooth the models.

Figure 1 shows the results on the task of phonetic recognition on
the development set in more detail. In this figure, the average re-
sults forN -fold aggregation are presented as well as the best and
worst individual trials for eachN . As can be seen, the average



error rate performance over twelve 2-fold trials (27.58%) is better
than the best single 1-fold trial (27.62%). Furthermore, the worst
trial from six 4-fold trials (27.38%) is still better than the best sin-
gle 1-fold trial (27.62%). Similar performance curves were ob-
served for both phonetic classification and word recognition.

4. MODEL PRUNING

We have investigated the possibility of reducing the variance of
the performance of a randomly trainedN -fold model through the
use of pruned tree-structured probability density functions [6]. We
have constructed a hierarchical tree of the Gaussian kernels in
the 24-fold models used for phonetic recognition. Pruning is per-
formed by utilizing the model of a branch node as a replacement
for the mixture of models of the leaf nodes which emanate from
it. The branch nodes each contain a single Gaussian density func-
tion which estimates the actual mixture of Gaussians produced by
the leaf nodes. It is hoped that the single Gaussian of a branch
node provides a reasonable approximation of the likelihood func-
tion yielded by its leaf nodes. As pruning progresses backwards
towards the root of the tree, less computation is required but more
approximation is performed.

For our experiments we create a tree structure density with bottom-
up clustering using a weighted Bhattacharyya distance. Given two
Gaussian density functions,g1, and g2, the Bhattacharyya dis-
tance,b(g1; g2), is

1
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Here�1 and�1 are the mean and covariance of Gaussian 1 and�2
and�2 are the mean and covariance of Gaussian 2. The weighted
Bhattacharyya function used during clustering is

d(g1; g2) =
w1 +w2

w1w2

b(g1; g2) (16)

Here,w1 andw2 are the mixture component weights. By using
this weighting scheme, the clustering is biased toward clustering
mixture components which have similar weights.

To test the effectiveness of the tree-structured pruning, the 24-fold
set of TIMIT phonetic recognition models was pruned until it was
the same size as a 12-fold model, then an 8-fold model, etc. The
pruned models were tested on the TIMIT development set to com-
pare their performance against standardN -fold aggregation. The
results are also shown on Figure 1. As can be seen, the pruned
24-fold models obtain performances which are comparable to, if
not better than, the average of theN -fold models of the same size.
A similar curve is observed on the TIMIT core test set. This em-
pirical result suggests that aggregating many models followed by
pruning is advantageous because it is likely to achieve theexpected
N -fold performance.

In the future, we hope to further utilize the tree structure to reduce
computation by performing the fast likelihood approximation tech-
nique suggested by Watanabe,et al. [6]. In this approach, pruning
of low scoring branches is done dynamically during testing. Ag-
gregated models may be well suited to this type of approach since
many of the Gaussian kernels from different training trials may be
similar and exhibit large overlap with each other. Gaussian kernels
such as these might well be approximated with a single Gaussian
without severely degrading their likelihood estimates.

5. CONCLUSIONS

In this paper, we have presented the theoretical foundation for the
model aggregation technique. We have also evaluated this tech-
nique on several standard speech recognition tasks using mixture
Gaussian models. In each case, aggregation was found to produce
significant improvements over standard training techniques, with
observed error rate reductions of up to 12%. Aggregation performs
particularly well when the standard training techniques produce
models that are overfit to the training data. Additionally, these im-
provements are robust to changes in the test set. A tree-structured
pruning method was also introduced. Experiments indicate that
the pruned models retain some beneficial robustness properties of
the aggregated models. This aggregate-then-prune technique is
a potential replacement for the standard cross-validation strategy
of choosing the single trial that performs best on a development
set. Furthermore, dynamic pruning could lead to reduced compu-
tational requirements with minimal degradation in performance.

There are a large number of possible generalizations and exten-
sions of this work. In a sense, model aggregation is equivalent
to linear interpolation of models, where the interpolation is per-
formed using equal weights. Thus, any situation where models are
interpolated can be viewed as a form of aggregation. This encom-
passes common techniques such as the interpolation of speaker-
independent and gender-specific models, or the interpolation of
context-independent and context-dependent models. In recent ex-
periments usingSUMMIT, aggregation was fruitfully applied to
models trained using different segmentations of the speech signal.
Thus, a wide variety of techniques may be used in order to gener-
ate classifiers producing different posterior probabilities. One set
of techniques can be obtained by perturbing the classifier struc-
ture or type. Another set of techniques emerges from perturbing
the learning set through weighting, resampling, or generating new
learning sets through alternative preprocessing of the same under-
lying input data. In addition to these extensions, more sophisti-
cated schemes for combining classifiers have been developed [5].
Aggregation remains attractive because of its simplicity, and be-
cause the empirical evidence indicates its effectiveness in reducing
the error rate in typical speech classification and recognition tasks.
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