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ABSTRACT

In this paper, we consider the problem of blind separation of causal
minimum phase convolutive mixtures of two sources. We study in
detail the so-called decorrelation approach. It consists in finding
a causal minimum phase filter which, driven by the observations,
produces decorrelated outputs. It is well established that this ap-
proach allows to separate the sources if the mixing filter is a non
static FIR filter. We show that this result is no longer true in the
IIR case. We establish that it exists infinitely many causal min-
imum phase filters producing decorrelated outputs and provide a
parameterisation of these filters. This clearly shows that the decor-
relation approach is, in practice, non robust. In order to overcome
this drawback, we propose an alternative approach based on a lin-
ear prediction scheme, which, as the decorrelation approach, uses
essentially the second order statistics of the observations.

1. INTRODUCTION

This paper deals with the problem of separating a convolutive mix-
ture of two sources when there are two sensors. More precisely, let
us suppose that two sourcess1(n) ands2(n) are observed on two
sensors after having been convolutively mixted by a two input/two
output unknown linear system. The transfert function of this sys-
tem will be noted

H(z) =

�
H11(z) H12(z)
H21(z) H22(z)

�

The observed signaly1(n) andy2(n) can then be written :�
y1(n) = [H11(z)]s1(n) + [H12(z)]s2(n)
y2(n) = [H21(z)]s1(n) + [H22(z)]s2(n)

Put s(n) = (s1(n); s2(n))
T . The source separation problem

consists in recovering the contributions[Hi;j(z)]sj(n) of each
source signalsj(n) on each sensor using only the observation
of the signaly(n) = (y1(n); y2(n))

T for (i; j) 2 f1; 2g2 1.
In other words, one wishes to reconstruct the signals that would
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1without addtitional assumptions, it is impossible to reconstruct the
source signalssj(n) themselves

be observed if the unknown system were driven separately by
[s1(n); 0]

T and by[0; s2(n)]T . Therefore, we can replace with-
out any noticeable restrictions1(n) by [H11(z)]s1(n) ands2(n)
by [H22(z)]s2(n), equivalent to normalising the diagonal terms of
H(z) to 1. Therefore, the model of the observed signals is written :�

y1(n) = s1(n) + [H12(z)]s2(n)
y2(n) = [H21(z)]s1(n) + s2(n)

(1)

In the rest of this paper, the following hypothesis will be made :

� H1 : the filtersH12(z) andH21(z) are causal

� H2 : the filterH(z) is minimum phase i.e. its inverse is
causal ; this can be written :1�H12(z)H21(z) 6= 0 8z j
jzj > 1

Although rather restrictive, these hypothesis are realistic in certain
situations and, therefore, often met (see e.g. [5, 4, 6]). In a number
of works devoted to the model (1), it is proposed to identify a filter
G(z) of the form

G(z) =

�
1 �G12(z)

�G21(z) 1

�

such as its application on the observationy(n) generates a signal
r(n) = [r1(n); r2(n)]

T = [G(z)]y(n) which components are
independent. The form ofG(z) is justified by the fact that the
separation is achieved (i.e.r(n) = s(n)) if and only ifGij(z) =
Hij(z) i 6= j (i; j) 2 f1; 2g2.

The statistical independence ofr1 andr2 is of course difficult
to express analytically. Therefore, the matrixG(z) is often sought
in order to cancel some cross-cumulants of the signalsr1(n) and
r2(n). The so-called decorrelation approach introduced in [4] con-
sists in adaptingG(z) so as to decorrelate the signalsr1(n) and
r2(n). It is quite clear that it exists infinitely many filtersG(z)
decorrelatingr1(n) andr2(n) (see e.g. [7]). However, it has been
proved recently by Lindgren and Broman [5] that ifH(z) is a non
static (i.e.H(z) is not reduced to a constant matrix) finite impulse
response (FIR) filter satisfying the hypotheses H1 and H2 then,
the filterG(z) defined byGij(z) = Hij(z) is the uniqueFIR
minimum phase causal filter decorrelating the two components of
[G(z)]y(n). Therefore, it seems that the decorrelation approach
can be successful in the FIR case by restricting the filtersG(z) to
a certain domain. This result is potentially attractive because the



decorrelation approach is based on the exclusive use of the second
order statistics of the observation. Therefore, it may be used to
separate convolutive mixtures ofGaussiansignals.

In this paper, we first study the decorrelation approach under
the hypotheses H1 and H2 in section 2. By contrast with the
work of Lindgren and Broman, we consider the more general case
whereH(z) is an infinite impulse response (IIR) filter. We es-
tablish that it exists infinitely many causal and minimum phase
filtersG(z) decorrelatingr1(n) andr2(n) which do not separate
the sourcess1 ands2. We moreoever provide a parameterisation
of these filters. In the FIR case, we reconcile our results with [5] :
if H(z) is FIR, the unique minimum phase FIR separating filter
isGij(z) = Hij(z).These results prove that the decorrelation ap-
proach is not robust because the FIR model is very often a sim-
plified model. Moreover, in practice, the decorrelating filters are
obtained by minimizing a certain non-quadratic cost function. Our
results suggest that even ifH(z) is FIR, this cost function has a
number of spurious local minima corresponding to FIR truncations
of non separating IIR solutions of the decorrelation equations. In
section 2, we propose an alternative approach based on a linear
prediction scheme which is shown to be more efficient.

2. THE SOLUTIONS OF THE DECORRELATION
EQUATIONS

By decorrelation equations we mean the set of relations ex-
pressing that the two components of[G(z)]y(n) are uncorre-
lated. The separating solution corresponds - up to the term
(1 �H12(z)H21(z))

�1 - to the inverse of the filterH(z) which
is supposed causal and of causal inverse (hypotheses H1 and H2).
The solution sought is hence a causal filter with causal inverse as
well. Therefore, as mentionned in section 1, it is natural to limit
our research of the solutions of the decorrelation equations to the
set of minimum phase causal filtersG(z).

In order to simplify the results, the spectra of the source sig-
nalss1(n) ands2(n) will be supposed rational. With this hypoth-
esis, the concept of minimum causal phase factorisation of their
spectral density can be easily defined. More precisely, there ex-
ist two unit variance white noises�1(n) and�2(n) and two min-
imum phase causal filtersf1(z) and f2(z) for which si(n) =
[fi(z)]�i(n) for i = 1; 2. Moreover, �1(n) and �2(n) coin-
cide with the normalised (in the sense thatE(�2i (n)) = 1) in-
novation processes ofs1 and s2 respectively. Now, letG(z)
be a minimum phase causal filter solution of the decorrelation
equations i.e. such that the two componentsr1(n) and r2(n)
of the signalr(n) = [G(z)]y(n) are uncorrelated signals. Let
gi(z) i = 1; 2 be the minimum phase causal factorisations of
these signals and�i(n) their corresponding normalised innova-
tion processes. The decorrelation ofr1(n) and r2(n) is then
equivalent to the one of the white noises�1(n) and �2(n).

Furthermore, let us setf(z) =

�
f1(z) 0
0 f2(z)

�
; g(z) =�

g1(z) 0
0 g2(z)

�
; �(n) = [�1(n); �2(n)]

T and �(n) =

[�1(n); �2(n)]
T Then,�

r(n) = [g(z)]�(n)
s(n) = [f(z)] �(n)

Alternatively,r(n) = [G(z)][H(z)]s(n).

The expression of the signalsr(n) ands(n) according to their
normalised innovation processes leads to :

�(n) = �(z)�(n) (2)

with
�(z) = g(z)�1G(z)H(z)f(z) (3)

But the two components of�(n) and�(n) are both unit variance
white noises. The spectral densities of the 2-variate sequences
�(n) and�(n) thus both coincide with the2�2 identity matrixI.
Therefore,�(z) must satisfy :

�(z)�(z�1)T = I

or equivalently(�(z))�1 = �(z�1)T . On the other hand,�(z)
and its inverse are products of four causal filters of causal inverses.
They are therefore causal of causal inverses themselves. As we
have seen that the inverse of�(z) verifies�(z)�1 = �(z�1)T ,
it is causal if and only if�(z) is reduced to an orthogonal2 � 2
constant matrix.

This matrix can be parametrised as :

� =

�
cos � sin �
� sin � cos �

�
= cos �

�
1 t
�t 1

�

wheret = tan �. By using this parametrisation and simplifying
the relation (3), the filterG(z) can be expressed as :(

G12(z) =
f2(z)H12(z)�tf1(z)
f2(z)�tf1(z)H21(z)

G21(z) =
tf2(z)+f1(z)H21(z)

tf2(z)H12(z)+f1(z)

(4)

Therefore, we have shown that any minimum phase causal filter
G(z) solution of the decorrelation equations can be parametrised
in the form (4). Conversely, it is clear that every minimum phase
causal filterG(z) given by (4) is a solution of the decorrelation
equations. It remains to characterise the filters (4) which are mini-
mum phase and causal. It can easily be checked that det(G(z)) =
(1 + t2)det(H(z)) so that, for any value oft, det(G(z)) 6= 0
for jzj > 1 with the hypothesis H2. To conclude, the filterG(z)
is causal of inverse causal if and only if it is causal. In order to
ensure the causality toG(z) a necessary and sufficient condition
is that the denominators ofG12(z) andG21(z) have no zero out-
side the unit circle. This holds not only for the separating solution
(which corresponds tot = 0) but for anyt sufficiently small as
well. Therefore, the decorrelation equations have infinitely many
causal solutions. If we further suppose thatH(z) is FIR, we can
impose the same constraint onG(z) and a close look at (4) sug-
gests that, in this case, the only possible solution is the separating
one (i.e. t = 0). This last result confirms the one expressed by
Lindgren and Broman [5]. However, the former analysis clearly
shows that the separating character of the solutions of the decor-
relation equations is fundamentally non-robust. This result and its
possible consequences will be illustrated in the simulation section.

3. THE LINEAR PREDICTION APPROACH

The linear prediction approach originates from the work of Comon
devoted to the identification of non monic MA models [2]. It has
been later used in the more general context of source separation
by Delfosse and Loubaton in [3] when the number of sensors is
strictly greater than the number of sources. Here, we will adapt
this result to the simpler case of two sources and two sensors.



First, let us remind some basic notions and definitions. The in-
novation process of the multivariate observationy(n) is the signal
defined byi(n) = y(n) +

P+1

k=1
Aky(n � k) = [A(z)]y(n)

where the filterA(z) = I +
P

k�1
Akz

�k is defined by :

A(z) = argminB E

hy(n) +P1

k=1
Bky(n� k)

2i.
i(n) is a white noise (i.e.E[i(n + k)i(k)T ] = 0 for n 6= 0)
whose instantaneous covariance matrixD = E[i(n)i(n)T ] is not
necessarly reduced to the identity matrix : indeed, the two com-
ponentsi1(n) andi2(n) of i(n) are neither decorrelated nor unit-
variance. The normalised innovation process ofy(n) is then any
white noisev(n) defined throughi(n) by v(n) = L�1i(n) where
L satisfies2 D = LLT . Consequently,E[v(n)v(n)T ] = I. It is
clear that the normalised innnovation process is defined up to an
orthogonal matrix : ifv(n) is a normalised innovation process, so
isw(n) = Qv(n) whereQ is an orthogonal matrix.

The principle of the linear prediction approach contents three
steps :

Step 1. As we have supposed that the filterH(z) is minimum
phase, so isH(z)f(z) where we recall thatf(z) is the diago-
nal filter matrix which elements are the minimum phase factori-
sation of the spectral densities of the sourcess1(n) and s2(n).
Under these conditions, the two-dimensional white noise�(n) =
(�1(n); �2(n))

T constructed from the normalised innovations of
the source signalss1(n) ands2(n) coincides witha normalised
innovation of the observationy(n) (recall that the normalised in-
novation process is not uniquely defined in the multivariate case).
�(n) can thus be extracted,up to an orthogonal matrix, fromy(n)
by a linear prediction algorithm : having evaluated the prediction
error filterA(z) of y(n), the innovationi(n) and its covariance
matrixD are extracted. Finally, one generatesv(n) = L�1i(n),
whereL is a particular square root ofD.

Step 2. v(n) = ��(n) where� is an unknown constant or-
thogonal matrix. In order to extract�(n), we just have to no-
tice thatv(n) is an instantaneous mixture of the two statistically
independent signals�1(n) and �2(n). �1(n) and �2(n) can be
extracted by any classical separation algorithm of instantaneous
mixture (see e.g. [1, 2]) if the source signals are non Gaussian.

Step 3.The last step consists in reconstructing the contribution
of each source on each sensor, i.e. the signalss1(n) ands2(n). In
order to do that, let us set

K(z) = �TL�1A(z)

Therefore,
H(z)f(z) = K

�1(z)

and, consequently

K
�1(z)

�
�1(n)
0

�
=

�
s1(n)
�

�

Therefore,s1(n) can be reconstructed fromK(z). s2(n) is
reconstructed in the same way. It is worth noticing that the instan-
taneous separation algorithm applied tov(n) generates�(n) up
to a permutation and a sign. We thus have to deal with this inde-
terminacy in the reconstruction ofs1(n) ands2(n), possibly by
adapting the formerly presented scheme.

Finally, the infinite order prediction error filterA(z) can not be
exactly computed because the exact second order statistics ofy(n)

2In our case,D is invertible

are not available. In practice,A(z) is replaced by an empirical es-
timate ÂN (z) of a finite order prediction error filterAN (z) =

I +
PN

k=1
Ak;Nz

�k, with N sufficiently big. The first two steps
of the previously described procedure can be adapted without any
serious methodological problem. For the last one,K(z) has to be
replaced by a FIR filter of lengthN KN (z) = �T

NL
�1
N AN (z),

where thê means that all the quantities are empirical estimates
and the indexN signifies that�N andLN are evaluated on the
basis of the empirical partial innovationiN (n) = [AN (z)]y(n).
For this last step to have a meaning, the filterKN (z)�1 has to be
stable which is true ifAN (z)�1 is stable. In practice, the coeffi-
cients ofAN are estimated by solving a Yule-Walker type equation
based on an estimator̂RN of the covariance matrix of the vector
Y (n) = (y(n)T ; � � � ; y(n � N)T )T . It is well known that, as
soon asR̂N is chosen to be block Toeplitz and positive definite,
the stability ofAN(z)�1 is guaranteed. Practically, it is hard to
impose simultaneously these two conditions to the estimatorR̂N

but any reasonnable estimator generates a stable filter if the num-
ber of observations is big enough.

As a conclusion, the linear prediction approach seems to be a
satisfactory alternative to the decorrelation technique. Its only dis-
advantage is that it implicitely supposes to approximateH(z) and
f(z) by FIR filters. If the spectra of the sourcess1(n) ands2(n)
have zeros, this last step will be hard to accomplish and the effi-
ciency of the procedure will decrease. However, the inversion of
H(z) can be intrinsequely easy, particularly by using a decorrela-
tion technique ifH(z) is exactly FIR.

4. RESULTS AND SIMULATIONS

In the following simulations, the filterH(z) will be taken such as

H12(z) =
1+0:5z�1

1�0:1z�1
andH21(z) =

1+0:2z�1

1�0:1z�1
in the IIR case and

H12(z) = 1 + 0:2
p
2z�1 andH21(z) = �1 + 0:2

p
2z�1 in the

FIR case. We note that in the IIR case, the poles ofH12(z) and
of H21(z) are very far from the unit circle. In other words, our
IIR filter H(z) can be approximated with a very good accuracy
by a low degree FIR filter. The observation sample size is set to
T = 10000.

4.1. Decorrelation

In practice, the filtersG12(z) andG21(z) are parametrised by FIR
filters of fixed degreep, even in the IIR case. Let us callic the vec-
tor whose coefficients are the first(4p+1) empirical intercorrela-
tion coefficients betweenr1(n) andr2(n). Then, the coefficients
ofG12(z) andG21(z) are determined so as to minimize the sum of
the square of the coefficients ofic. For each fixed value ofG12(z)
(resp.G21(z)), the corresponding cost function is quadratic in the
coefficients ofG21(z) (resp.G12(z)). It is therefore possible to
derive a very simple iterative relaxation algorithm converging to
one of the local minima of the cost function (see e.g. [7]). It is
clear that the initialisation of the algorithm is crucial and that its
convergence toward the global minimum is not guaranteed.

First, the existence of spurious solutions expressed in (4) is
illustrated in the IIR case. The Figure 1 shows the norm� of
the vectoric for different filtersG(z) obtained by calculating the
polynomial truncation of (4) for different values oft. The plot
can be compared with Figure 2 which shows the evolution ver-
sust of the restoration rate defined bysep = sep1 + sep2 and



sepi =

P
T

n=1
(si(n)�ri(n))

2P
T

n=1
si(n)

2
with T representing the number of

samples.

Figure 1:�(t)

Figure 2:sep(t)

In these plots, it should be noticed that the value of� is nearly
constant whereas the restoration rate increase noticeably. More-
over, att = 0 and only at this value, the solution is the separat-
ing one. We again stress that our IIR filterH(z) is ”numerically”
FIR, thus showing the robustness problems of the decorrelation
approach.

4.2. Linear prediction

The following plot (Figure 3) compares the signals1(n) (�) and its
estimater1(n) (+) on a duration of fifty samples in the IIR case.
It is clear that the restoration rate is satisfactory. More details will

Figure 3:s1(n) andŝ1(n)

be found in the following table.

4.3. Comparison between these two methods

In the Table 1, comparative results between the two proposed ap-
proaches are shown. The case ofH(z)FIR is shown first, followed

by the IIR case. For each case, two different initial values ofG(z)
have been tested for the decorrelation method : the first one is
closed to the optimal solution whereas the second one is farther.

Decorrelation Linear
Init. 1 Init. 2 Prediction

sep1 0.0016169 0.92525 0.021393 FIR
sep2 0.0061503 2.9199 0.073438 case

sep1 0.15435 0.58399 0.0015590 IIR
sep2 0.15074 0.55316 0.0013727 case

Table 1: Comparison

Even in the FIR mixture case, the decorrelation approach has
some robustness problems : indeed, the results are very sensitive
to the initialisation ofG(z) which seems to prove the existence
of local minima. This is consistent with the IIR case where the
decorrelation equations have an infinity of solutions. In practice, in
the IIR case, the decorrelation algorithm can never produce a filter
with good properties even if it is initialised closed to the optimal
solution.

5. CONCLUSION

In this paper, we have considered the blind separation of a par-
ticular convolutive mixture. We have first analysed in some de-
tails the decorrelation approach. We have shown that it exists in-
finitely many non separating minimum phase causal solutions of
the decorrelation equations and have provided a parameterisation
of this set. We have deduced from these results that the decorrela-
tion approach is, in practice, not robust. We have finally suggested
to use a linear prediction based approach providing good results in
the non Gaussian sources case.
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