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ABSTRACT

We study the problem of reducing the size of a lan-
guage model while preserving recognition performance
(accuracy and speed). A successful approach has been
to represent language models by weighted �nite-state
automata (WFAs). Analogues of classical automata
determinization and minimization algorithms then pro-
vide a general method to produce smaller but equiva-
lent WFAs. We extend this approach by introducing
the notion of approximate determinization. We provide
an algorithm that, when applied to language models for
the North American Business task, achieves 25{35%
size reduction compared to previous techniques, with
negligible e�ects on recognition time and accuracy.

1. INTRODUCTION

An important goal of language model engineering is to
produce small language models that guarantee fast and
accurate automatic speech recognition (ASR). In prac-
tice we see tradeo�s: e.g., in size vs. accuracy and in
accuracy vs. speed. There has been recent progress,
however, on automatic methods for reducing the sizes
of language models while preserving overall recognition
performance (accuracy and speed). Lacouture and De
Mori [5] and Kenny et al. [4] discuss the size reduction
of lexical trees in order to speed ASR systems, but they
deal only with unweighted trees. Pereira et al. [7,8] dis-
cuss the use of weighted �nite-state automata (WFAs)
to model human language in ASR systems. An ad-
vantage to this approach is that classical techniques
for automata determinization and minimization can be
extended to produce WFAs that are smaller yet for-
mally equivalent to their inputs; i.e., each input string
is assigned the same cost in both the input and the
reduced models. Mohri [6] develops these ideas and re-
ports signi�cant size reductions from their application
to ASR word lattices.
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We extend Mohri's approach by relaxing the re-
quirement that the output model be formally equiv-
alent to the input. We introduce a technique that
we call approximate determinization, which produces a
WFA that accepts precisely the same strings in a given
language but only approximates their costs. Clearly,
by using arbitrarily di�erent costs (e.g., zero for all
strings), we could produce trivially small language mo-
dels that would perform poorly in ASR systems. There-
fore, our algorithm accepts an approximation param-
eter that controls the tradeo� between output model
size and recognition performance.

In experiments on NAB languagemodels, we achieve
25-35% size reduction compared to Mohri's exact de-
terminization and minimization algorithms, without af-
fecting ASR time or accuracy. These results are invari-
ant under di�erent beamwidths. We also show that our
approximation algorithm preserves many of the n-best
strings in the ASR output. Our technique is completely
general and applicable to any language model.

Section 2 describes our algorithm. Section 3 reports
experimental results showing size reduction and preser-
vation of n-best strings. Section 4 reports experimental
results showing size reduction and word accuracy. We
conclude in Section 5.

1.1. De�nitions

A weighted �nite automaton (WFA) is a tuple A =
(Q; �q;�; �; Qf ) such that Q is the set of states, �q 2 Q is
the initial state, � is the set of labels, � � Q���<+�Q
is the set of transitions, and Qf � Q is the set of �nal
states. A is also called a lattice. The size of A is jAj =
jQj + j�j. A deterministic, or sequential, WFA has at
most one transition t = (q1; �; �; q2) for any pair (q1; �);
a nondeterministic WFA can have multiple transitions
on a pair (q1; �), di�ering in target state q2.

Let ~t = (t1; : : : ; t`) be some sequence of transi-
tions, such that ti = (qi�1; �i; �i; qi); ~t induces string
w = �1 � � ��`. String w is accepted by ~t if q0 = �q
and q` 2 Qf ; w is accepted by A if some ~t accepts
w. Let c(ti) = �i be the weight of ti. Then the weight

of ~t is c(~t) =
P`

i=1 c(ti): Let T (w) be the set of all
sequences of transitions that accept string w. Then
the weight of w is c(w) = min~t2T (w) c(~t): The lan-



guage of A is the set of weighted strings accepted by
A: L(A) = f(w; c(w)) : w is accepted by Ag :

When WFA's are used to represent language mo-
dels, the weights are interpreted as negative log prob-
abilities. The weight assigned to a string by the WFA
is therefore the negative log probability of the string
occurring in the input speech. All de�nitions and algo-
rithms apply to WFAs over arbitrary semirings [1{3].

2. ALGORITHM

Mohri's automatic method for reducing the size of a
language model is based on classical automata theory.
First the input WFA, A, which is normally nonde-
terministic, is replaced by an equivalent deterministic
WFA, A0. From A0, an equivalent deterministic WFA,
A00, of minimum size is computed. Most of the size
reduction comes during the process of determinization.
We �rst describe Mohri's algorithm for WFA determi-
nization, which we call D. We then present observa-
tions about its behavior that motivate our approximate
determinization algorithm, ~D.

Given WFA A = (Q; �q;�; �; Qf), Mohri general-
izes the classical power-set construction to build de-
terministic WFA A0 as follows. The start state of A0 is
f(�q; 0)g, which forms an initial queue P . While P 6= ;,

pop state q = f(q1; r1); : : : ; (qn; rn)g 2 2Q�<
+

from P .
The ri values encode path-length information, as fol-
lows. For each � 2 �, let fq01; : : : ; q

0
mg be the set of

states reachable by �-transitions out of all the qi. For
1 � j � m, let �j = min1�i�n;(qi;�;�;q0

j
)2�fri+�g be the

minimum of the weights of �-transitions into q0j from
the qi plus the respective ri. Let � = min1�j�mf�jg.
Let q0 = f(q01; s1); : : : ; (q

0
m; sm)g, where sj = �j � � for

1 � j � m. If q0 is new, then it is pushed onto P .
Transition (q; �; �; q0) is added to A0. This is the only
�-transition out of state q, so A0 is deterministic.

Let TA(w) be the set of sequences of transitions in A
that accept a string w 2 ��; let ~tA0(w) be the (one) se-
quence of transitions in A0 that accepts the same string.
It can be shown that c(~tA0(w)) = min~t2TA(w)fc(

~t)g;

and thus L(A0) = L(A). Moreover, let TA(w; q) be the
set of sequences of transitions in A from state �q to state
q that induce string w. Again, let ~tA0(w) be the (one)
sequence of transitions in A0 that induces the same
string; ~tA0(w) ends at some state f(q1; r1); : : : ; (qn; rn)g
in A0 such that some qi = q. It can be shown that
c(~tA0(w)) + ri = min~t2TA(w;q)fc(

~t)g: Thus each ri is
a remainder that encodes the di�erence between the
weight of the shortest path to some state that induces
w in A and the weight of the path inducing w in A0.
At least one remainder in each state is thus zero.

Given the importance of weights in WFA determini-
zation, we studied the e�ects of D on a few ATIS word
lattices. We found that when tuples of states occurred
multiple times, with di�erent remainders, the remain-
ders tended to be \clustered" in the following sense.
Most corresponding remainders were equal; only one
or two di�ered between the tuples, and the di�erences
were small relative to magnitude.

This led to our approximate determinization algo-
rithm, ~D, which generalizes Mohri's algorithm as fol-
lows. In addition to a WFA A, ~D takes an approxima-

tion parameter " as input. When constructing a state
q0 = f(q1; r01); : : : ; (q`; r

0
`)g in the determinized WFA

A0, if there exists some previously constructed state
q = f(q1; r1); : : : ; (q`; r`)g such that, for 1 � i � `,
jr0i � rij � " � minfri; r

0
ig, we use q in place of q0. (If

some ri=0, the corresponding r0i must also be zero.)
A0 is still deterministic and accepts exactly the same
strings as A but may assign di�erent weights to those
strings.

Figure 1 gives pseudocode for ~D. In the next two
sections, we measure the quality of ~D. We �rst consider
how it preserves the n-best strings in word lattices. We
then show how it a�ects recognition performance when
applied to language models.

3. APPLICATION TO WORD LATTICES

In this section, we study the quality of ~D by measuring
how well it preserves the n-best strings of word lattices.
We applied ~D with various approximation parameters
to 100 word lattices generated by the AT&T North
American Business speech recognizer [9], using an ATIS
grammar. For each lattice, we measured the resulting
size reduction, and we determined the maximum n such
that the n-best strings in the input appeared, in the
same order, as the n-best strings in the output of ~D.
We averaged the results over the test set.

Figure 2 depicts the resulting size reduction. The x-
axis shows di�erent values of ", and the y-axis compares
sizes of the results with those of the input word lattices.
Even small values of " gave reduction factors better
than .4 for states and .2 for transitions.

Figure 3 shows that even using large values of " did
not a�ect the best paths through the lattices. Here the
y-axis shows the maximum n (up to n = 20) such that
the n-best strings were preserved in order.

4. RECOGNITION PERFORMANCE

In this section, we study the quality of ~D by applying
it, with di�erent values of ", to shrink the composed
lexicon and grammar for the NAB task. We ran 300
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Figure 4: Recognition performance; small NAB mo-
dels.

sentences using these models in the AT&T speech rec-
ognizer and determined the word accuracy of the result
against both the correct answer and that given by ASR
using the exact models. Figures 4{5 plot the results for
two di�erent NAB language models. The middle curves
show the relative sizes of the models produced by ~D
compared to the respective exact models produced by
D. The bottom curves show that recognition word ac-
curacy did not degrade appreciably. ( ~D with " = 0 is
equivalent to D.) The top curves show that the output
of ASR with the approximate models was nearly iden-
tical to the output with the exact models: we did not
just substitute one mistake for another.

We repeated this experiment for twelve di�erent
beam widths, producing similar results each time.

5. CONCLUSION

The experimental evidence shows that approximate de-
terminization produces models that are considerably
smaller than the minimal formally equivalent models,
with negligible e�ects on ASR performance. The 25{
35% saving in model space reduces the memory con-
sumption by the recognizer as well as the o�-line model-
building time. We saw no e�ect on ASR time, and
this deserves further study. We surmise that ~D shrank
parts of the model that were not explored during recog-
nition. As bigger models are required, we expect the
size reduction achieved by ~D to have a positive e�ect
on caching and paging.
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Figure 5: Recognition performance; large NAB models.
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