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ABSTRACT

To take advantage of fast converging multi{channel recur-
sive least squares algorithms, we propose an adaptive IIR
system structure consisting of two parts: a two{channel FIR
adaptive �lter whose parameters are updated by rotation{
based multi{channel least squares lattice (QR{MLSL) al-
gorithm, and an adaptive regressor which provides more
reliable estimates to the original system output based on
previous values of the adaptive system output and noisy
observation of the original system output. Two di�erent re-
gressors are investigated and robust ways of adaptation of
the regressor parameters are proposed. Based on extensive
set of simulations, it is shown that the proposed algorithms
converge faster to more reliable parameter estimates than
LMS type algorithms.

1. THE REGRESSOR BASED IIR ADAPTIVE

FILTER STRUCTURE

As shown in Fig. 1, in a typical adaptive �ltering applica-
tion, input, x(n), and noisy output, d(n), of an unknown
system are available for processing by an adaptive system
to provide estimates, y(n), to the output of the unknown
system as time progresses. In our investigation, the un-
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Figure 1: Common framework of IIR�
 and IIR{Kalman

known system or plant has an IIR model whose output can
be compactly expressed as a function of its previous values

and its input as:

w(n) =

NX
j=1

ajw(n� j) +

MX
i=0

bix(n� i) = �T�(n); (1)

where � is the vector of direct form system parameters:

� =
�
a1 � � � aN b0 � � � bM

�T
=
�
aT bT

�T
; (2)

and �(n) is formed by the previous values of the output and
the present and past values of the input:

�(n) =
�
w(n� 1) � � �w(n�N) x(n) � � �x(n�M)

�T
=

�
w(n)T x(n)T

�T
: (3)

Unlike the FIR adaptation, in adaptive IIR �ltering we
are faced with the problem of deciding on the feedback sig-
nal used in the adaptation when we have noisy observa-
tions of the actual system output. Hence, as shown explic-
itly in Fig. 1, we use a regressor in the proposed structure
which causally estimates the feedback signal based on the
noisy output d(n) and the output of the adaptive �lter y(n),
which is obtained as:

y(n) = �̂
T
(n)�̂(n) (4)

where �̂(n) is the vector of estimated system parameters

(
�
â(n)T b̂(n)T

�T
) and �̂(n) is the vector of the regres-

sor output, ŵ(n), and the system input, x(n):

�̂(n) =
�
ŵ(n)T x(n)T

�T
: (5)

The performance of the adaptive �lter heavily depends
on how well the regressor, ŵ(n), provides estimates to the
actual system output w(n). The two well known formu-
lations of adaptive IIR �ltering, namely the output error
(OE) and the equation error (EE) formulations, correspond
to two di�erent types of regressors. In the OE formula-
tion, the signal vector �̂

O
(n) is described as: �̂

O
(n) =�

y(n)T x(n)T
�T

which corresponds to a regressor whose
output is the output of the adaptive �lter. In the EE for-
mulation the signal vector, �̂

E
(n) is given as: �̂

E
(n) =�

d(n)T x(n)T
�T

which corresponds to a regressor whose



output is the noisy observation of the system output, d(n) =
w(n) + v(n).

Since the least squares cost function of EE formulation
is quadratic in terms of the parameter vector �, fast con-
verging recursive least squares techniques can be used in the
adaptation. However, because of the additive measurement
noise, v(n), the converged parameter values are biased es-
timates of the actual system parameters [1]. In the OE for-
mulation, the least squares cost function is not a quadratic
function of the parameters. Hence, we are bound to use
LMS type gradient descent techniques in the adaptation.
When these LMS type adaptation algorithms converge to
the global minima of the cost function, the obtained param-
eters are unbiased estimates of the cost function. Unfortu-
nately, LMS type gradient adaptation methods not only
converge slowly, but also may converge to a local minima
of the cost surface.

In this work, we try to combine the desired features of
both OE and EE formalism in one formulation where the
cost function is kept as a quadratic function of the param-
eters in order to use fast RLS techniques. As suggested in
Fig. 1, this is achieved by choosing the adaptive �lter as
a two{channel FIR �lter with inputs x(n) and ŵ(n � 1).
Then, the corresponding weighted least squares cost func-
tion becomes:

J(�; n) =

nX
k=1

(d(k)� �T �̂(k))2�n�k; (6)

which is a quadratic function of �, because �̂(n) is a �xed
sequence of vectors determined by the past parameter es-
timates �̂(n� 1); �̂(n� 2); � � � ; �̂(0). Hence, e�cient multi{
channel FIR recursive least squares techniques can be used
to obtain parameter estimates at time n, �̂(n), as the min-
imizer of J(�; n).

In the following section, two di�erent types of regressors
will be investigated in detail and corresponding recursive
least squares adaptation algorithms will be presented.

2. PROPOSED REGRESSORS

2.1. IIR�


The IIR�
 regressor estimates the actual system output as
a convex combination of the noisy observations, d(n) and
the adaptive �lter output, y(n):

ŵ(n) = 
nd(n) + (1� 
n)y(n) ; 0 � 
n � 1 (7)

where 
n is the regression coe�cient. The proper choice of

n should be based on a measure of the reliability of the es-
timated system parameters. A signi�cant deviation of y(n)
from d(n) is an indication that the system parameters are
not reliably estimated, and hence, 
n should be set close
to 1, so that equation error type adaptation should take
place. On the contrary, if y(n) closely follows d(n), then to
re
ect our level of con�dence to the estimated system pa-
rameters, 
n should be set close to 0, so that output error
type adaptation should be performed. We propose to base
the measure of reliability of the estimated system parame-
ters on the statistical signi�cance of the observed deviation
between y(n) and d(n) sequences. For this purpose, one

way of choosing 
n is based on weighted estimate of the
expected energy of the error sequence e(n) = d(n)� y(n):

L(n) =

Pn

i=0
�ive(n� i)2Pn

i=0
�iv

; (8)

where �v is an exponential forgetting factor that can im-
prove the performance of the estimator. In our investiga-
tion, we observed that the critical properties of the func-
tional form between L(n) and 
n are the boundary val-
ues l1 and l2 such that 
n = 0 if L(n) < l1 and 
n = 1
if L(n) � l2. In order to determine which values for l1
and l2 should be used, we investigated the expected values
of the L(n) for the cases of 
n = 0 and 
n = 1, which
correspond to output and equation error adaptation cases,
respectively. Assuming that 
n = 0 and the estimated pa-
rameters have converged to the actual ones, the observed
error sequence, e(n), will be equal to v(n), the additive
Gaussian observation noise. Hence, EfL(n)g will be �2v ,
the variance of v(n). Therefore, l1 is chosen as �2v. Like-
wise, when 
n = 1, EfL(n)g is equal to the variance of
e(n) sequence for the EE formulation. Since the equation
error, eE(n) is related to the output error, eO(n) as in [2]:
eE(n) = eO(n)� â

T (n)eO(n), when v(n) is white noise, the

variance of eE(n) can be written as: �2v
�
1 +

PN

i=1
â2i (n)

�
,

at the time of convergence to true parameters. Hence, we
propose to use:

l1 = �2v ; l2 = U�2v(1 +

NX
i=1

â2i ) (9)

where U > 1 is introduced to avoid the convergence point of
the equation error adaptation. For computational e�ciency,
the functional relation between L(n) and 
n is chosen as:


n =

8>>><
>>>:

0 L(n) < l1
� (L(n)�l1)

p

(
l2�l1

2
)p

l1 � L(n) < l1+l2
2

1� (1� �) (l2�L(n))
p

(
l2�l1

2
)p

l1+l2
2

� L(n) < l2

1 L(n) � l2

(10)

where � and p are two parameters providing some control
of the actual shape of the curve in between two boundaries
l1 and l2. Fortunately, we observed that the behavior of the
algorithm is not so sensitive to these shape parameters. For
each iteration, this regression algorithm requires (N + 11)
multiplications which is O(N).

2.2. IIR{Kalman

Output of the IIR{Kalman regressor is an estimate of the
actual system output obtained by using the Kalman �lter on
the following state{space model of the original system [3]:

w(n+ 1) = Aw(n) + Bx(n) (11)

d(n) = Cw(n+ 1) + v(n) (12)

where C =
�
1 0 � � � 0

�
. Since the actual parameters

are unknown in Eqn. (11), we can form Â and B̂ matrices
by using the estimated parameters at time n. Then, we get

w(n+ 1) = Â(n)w(n) + B̂(n)x(n) + u(n) (13)



ŵK(n+ 1jn) =
�
y(n) ŵK(n� 1) � � �

� � � ŵK(n�N + 1)
�T

P(n+ 1jn) = Â(n)P(njn)Â(n)T +Ru(n)

G(n) =
h

P(n+1jn)

P(n+1jn)(1;1)+�
2
v

0 � � � 0
iT

P(n+ 1jn + 1) = (I� G(n)C)P(n+ 1jn)

ŵK(n+ 1) = ŵK(n+ 1jn) +

G(n)
�
d(n)� ŵK(n+ 1jn)(1;1)

�
ŵ(n) = ŵK(n+ 1)(1;1)

Table 1: Equations of IIR{Kalman State Estimator

where u(n) is introduced as an additional noise term to the
system dynamics to account for the approximations in A
and B by Â(n) and B̂(n), which are equal to:

Â(n) =

�
�â(n)T

IN�1 0

�
; B̂(n) =

�
b̂(n)T

0(N�1�N)

�
: (14)

Since the approximations in A(n) and B(n) are only limited
to the �rst row, the additional process noise u(n) is:

u(n) =
�
u(n) 0 � � � 0

�T
: (15)

Application of the Kalman �lter on the approximated model
requires the covariance matrices Ru(n) and Rv(n) of u(n)
and v(n), as well as an initial estimate to the state vector
w(0) and the variance of the initial system errorRu(0). The
Ru(n) can be determined by the sample variance of u(n) for
which a robust way is presented in [4]. The steps of the cor-
responding Kalman estimator are given in Table 1, where
Â(n); B̂(n); ŵ(n) are de�ned in Eqns. (14), (5) and the no-
tation of T(1;1) is used to denote the �rst diagonal entry of
the matrix T . Note that the output of the regressor ŵ(n)
is the �rst entry in the estimated state vector ŵK(n + 1)
and also the a{priori state estimate ŵK(n+1jn) is obtained
e�ciently by using the output of the adaptive �lter and the
previous states of the Kalman �lter. For each iteration,
the Kalman regressor requires (3N2 + 2N) multiplications,
hence it is O(N2).

The required two{channel FIR adaptation can be e�-
ciently performed by using QR{MLSL algorithm which is
a rotation{based multi{channel least squares lattice algo-
rithm with many desired features [5]. For each update, this
algorithm requires O(4N) multiplications. The required di-
rect form parameters for the Kalman regressor can be com-
puted by using standard mapping rules between lattice and
direct form parameters [5].

3. SIMULATION EXPERIMENTS

In the following simulations, the adaptive �lters are \all{
zero" initialized and reported system identi�cation results
are the ensemble average of 50 realizations. The proposed

algorithms are compared with two descent type IIR adap-
tation algorithms CRA [6] and BRLE [2], as well as with
the extended Kalman �lter (EKF) algorithm (which is an
O(N2) algorithm presented in [4]).

3.1. Simulation Example 1

The system to be identi�ed is chosen as in [2]:

H(z) =
1

1� 1:7z�1 + 0:7225z�2
: (16)

The input is a unit{variance white Gaussian process. The
output noise, v(n), is chosen as white Gaussian. �v is var-
ied to investigate the sensitivity of the performance of the
algorithms to the level of SNR.

In Fig. 2, the squared norms of the parameter error vec-
tors, e�(n) = � � �̂(n) are plotted. �v is set to 0.5. The
forgetting factor, � of the QR{MLSL algorithm is chosen
as 0.999, and the parameters of the regressor subsystem
of Eqns. (9) and (10) are chosen as �v = 0:9; p = 1; � =
0:7; U = 2. For the IIR{Kalman regression algorithm, the
initial variance estimate, ~�2u(0) is chosen as unity. In or-
der to better resolve the early convergence behaviors of the
compared algorithms, a logarithmic time axis is used in
Fig. 2. As seen in this �gure, the proposed algorithms have
converged to an error level of -10 dB earlier than the 1000th

sample, but the CRA and BRLE algorithms converge to the
same error level at about 40000th sample. The EKF algo-
rithm, performing the best, converges to -20 dB at around
50000th sample. Here, the same step{size of 0.0005 is used
for the CRA and BRLE algorithms. As recommended in [2]
and [6], the composition parameter 
 for CRA is chosen as
0.9, and the remedier parameter of BRLE, � (n) is chosen

as min(k�̂(n)k=keO(n)k; 1).

In this example, conventional equation and output er-
ror (EE and OE) adaptation converged to error levels of
-7 dB and 5 dB respectively, which are signi�cantly higher
than those of compared algorithms here. Therefore, as ini-
tially expected, the performance of the regressor based RLS
approaches can be better than both the EE and OE formu-
lations.

We repeated this experiment at di�erent noise levels
and reported the obtained ke�(n)k

2 results in Table 2. In
this experiment, the best performing algorithm is found as
the EKF algorithm. However, EKF requires an order more
multiplications than IIR�
 algorithm. As seen from these
results, at high SNR (low levels of �v), LMS type algo-
rithms converge to lower error levels. However, as the SNR
decreases (high values of �v) the proposed algorithms start
providing closer or better results than LMS type algorithms,
which is an important advantage in many practical applica-
tions. Note that, the tabulated results correspond to the er-
ror levels at the 5000th sample for the proposed algorithms
and 50000th samples for the EKF, CRA and BRLE algo-
rithms. Since, in many important applications, the speed of
convergence is critical, the proposed algorithms provide a
good trade{o� between error levels and the speed of conver-
gence even at high SNR. Also, IIR�
 provides comparable
results to IIR{Kalman although it requires an order less
number of multiplications.



�v IIR�
 IIR{Kalman EKF CRA BRLE
0.05 -74.57 -82.25 -74.55 -84.97 -77.38
0.10 -50.92 -56.29 -69.49 -62.50 -55.72
0.25 -24.19 -27.18 -38.88 -32.16 -28.38
0.50 -10.27 -10.90 -21.27 -11.31 -10.23
1.00 -1.40 0.40 -5.62 3.61 3.53

Table 2: Squared norm of parameter error in dB at conver-
gence for di�erent noise levels (Example 1)
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Figure 2: Squared norm of parameter error (Example 1)

3.2. Simulation Example 2

In this example, an abruptly changing system is selected
with the time{varying transfer function:

H(z; n) =

(
0:2759+0:5121z�1+0:5121z�2+0:2759z�3

1�0:001z�1+0:6546z�2�0:0775z�3 n < 500
0:7241+0:4879z�1+0:4879z�2+0:7241z�3

1+0:001z�1+0:6546z�2+0:0775z�3 n � 500

(17)
The input sequence is chosen similar to the previous exam-
ple. The output noise v(n) is chosen as a zero{mean white
Gaussian noise with a variance of 0.25. The step{size of
CRA and BRLE algorithms is set to 0.01. The composition
parameter, 
 of CRA is set to 0.5, and the remedier param-
eter, �(n) of BRLE is determined as in the �rst example.
The forgetting factor of the proposed algorithms is set to
0.99 for a better tracking of the variations in the system pa-
rameters. For IIR{Kalman algorithm, initial variances are
chosen as unity. The parameters of IIR�
 in Eqns. (9) and
(10) are chosen as �v = 0:95; p = 1; � = 0:3; U = 5. EKF is
also initialized with all{unit variances. The squared norm of
parameter errors ke�(n)k

2 is shown in Fig. 3. As seen from
these results, both CRA and BRLE, whose performance are
very close to each other, are outperformed by the proposed
algorithms. IIR�
 and IIR{Kalman have the best perfor-
mance where EKF algorithm has converged to a higher er-
ror level. Again, at an order less amount of multiplications,
IIR�
 provides comparable results to IIR{Kalman.

4. CONCLUSION

In order to use fast recursive least squares adaptation algo-
rithms in adaptive IIR �ltering, a regressor based adaptive
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Figure 3: Squared norm of parameter error (Example 2)

system structure is proposed. Two di�erent regressor algo-
rithms, requiring O(N) and O(N2) number of multiplica-
tions respectively, are proposed to provide reliable estimates
to the system output. Based on extensive set of simulations,
it is found that for time{invariant systems, the proposed
algorithms not only converge faster than LMS type algo-
rithms, but also provide more reliable parameter estimates
at low SNR. Additionally, in the simulation of the systems
with abrupt changes, it is observed that the proposed re-
gressor based adaptation algorithms establish faster conver-
gence to lower error levels, outperforming BRLE, CRA and
EKF.
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