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ABSTRACT

The classification of chaotic signals generated by a low-dimension-
al deterministic models given a dictionary of possible model is
considered. The proposed classification methods rely on the con-
cept of “best predictor” of signal. A statistical interpretation of this
concept based on the ergodic theory of chaotic system is presented.
A sort of “bootstrapping” estimator of the statistical properties is
introduced. The method is validated by numerical simulations. Di-
rections for future research are suggested.

1. INTRODUCTION

Also known under the popular name of “chaos theory,” the theory
of nonlinear dynamical system has been the subject of consider-
able advances over the past twenty years. Chaotic systems are
deterministic dynamical systems with a small number of degrees
of freedom whose behavior appears, in a sense, random and unpre-
dictable. Most of the early research efforts on chaos theory have
been the fact of mathematicians and physicists. Mathematical and
computational tools for the characterization of chaos in theoretical
and experimental systems have been developed [1, 2]. They have
been used successfully in a variety of scientific fields. However,
it is only recently that electrical engineers have started to look at
possible “practical” applications of chaos theory [3, 4, 5].

From the signal processing viewpoint, the engineering appli-
cations of chaos that have been proposed so far can be broadly
organized into four categories: characterization of chaotic signals
[6], synthesis of chaotic signals with useful properties [7], filter-
ing, prediction, or smoothing of chaotic signals observed in noise
[8, 9], replacement of the stochastic model for the perturbing noise
in a signal of interest by a chaotic model for parameter estimation
and signal detection problems [10]. In the applications of the last
category, taking advantage of the structure present in the chaotic
“noise” generally led to improved performance in situations for
which a low-dimensional chaotic noise model is better suited than
a stochastic noise model.

In this paper we treat the following related problem: given a
“random” signal of unknown origin and a dictionary of possible
known chaotic models, find the model that corresponds to the sig-
nal. That is, we address the problem of classifying chaotic signals.
Furthermore, the evaluation of the confidence level that can be as-
sociated with the classification result is also considered. A solution
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based on powerful results of ergodic theory of dynamical systems
[11] will be proposed.

This paper is organized as follows. In section 2, the ergodic
theory of chaotic systems is briefly reviewed. The classification
problem is formally stated in section 3, and a solution is proposed
in section 4. Simulation results are presented in section 5. Con-
cluding remarks are made and directions for future research are
suggested in section 6.

2. CHAOS AND ERGODICITY

This section provides a brief informal review of the necessary the-
oretical concepts about chaotic systems and ergodicity. A more
rigorous treatment can be found in the literature, e.g., in [11] or in
[12].

2.1. Chaos and Discrete-Time Dynamical Systems

In our development, we consider discrete-time signalsy[n] with
the following state-space description:

x[n] = F(x[n� 1]) (1)

y[n] = h(x[n]); (2)

wherex[n] 2 IRM , x[0] denotes the initial conditions,F(�) is a
M -dimensional nonlinear transformation, andh(�) is a real-valued,
possibly nonlinear, function ofIRN . This model can cover an ex-
tremely broad class of signals For instance, by Taken’s embedding
theorem [1] it is known that a state space vector representation
x[n] can be constructed for many partially observed chaotic sys-
tems from a scalar time seriesy[n] by the delay method: let

x[n] = (y[n]; y[n� 1]; : : : ; y[n�M + 1])0;

withM adequately chosen, and leth(x) = (1; 0; : : : ; 0)0x. In this
case, the representation of a time seriesy[n] in terms of the state
and observation equations (1)–(2) is equivalent to the representa-
tion in terms of the (nonlinear) prediction equation

y[n] = f(y[n� 1]; y[n� 2]; : : : ; y[n�M ])

= f(x[n� 1]) (3)

Chaos theory is concerned with the asymptotic behavior of a
subclass of the dynamical systems defined by the state equation
(1), viz. autonomous dissipating systems [2]. These systems ex-
hibit a long-term behavior corresponding to the convergence of
the state space trajectoriesx[n] to a subsetA of the state space



called anattractor. Aperiodic (or chaotic) asymptotic behavior
corresponds tostrangeattractors which have generally a fractal
structure.

2.2. Statistical Interpretation and Ergodic Properties

A stochastic processfx[n]g can be associated to a deterministic
recurrenceF by considering the initial conditionx[0] as a random
variable (r.v.) with a given distribution�0. Let �n denote the
distribution corresponding to the random variablex[n]. Clearly,
�n depends on�0 and on the mappingF. The Frobenius-Perron
operatorF associated withF is defined as the operator in the space
of probability distribution that maps�n�1 to �n, that is,

�n = F�n�1: (4)

Under some regularity and smoothness conditions, the Frobenius-
Perron operatorF will admit a fixed point� called theinvariant
distribution,

� = F�: (5)

The invariant distribution is related to the attractorA by �(A) =
1. When�0 is an invariant distribution, it may be shown that the
resulting stochastic processfx[n]g is stationary and, subject to
certain constraints onF, ergodic. In this case, Birkhoff’s ergodic
theorem can be used to establish the equivalence of time-average
and ensemble-average for almost all trajectories, i.e.,

lim
N!1

1

N

N�1X
n=0

g(F(n)(x0)) =

Z
g(x)d� a:s:(�); (6)

whereF(n) denote then-th iteration of the mapF andg : IRM !
IR is any integrable function. When�0 is not an invariant density,
fx[n]g is no longer stationary but may still be ergodic.

Furthermore, because of the sensitivity to initial conditions
of chaotic systems, it may be shown that the stochastic process
fx[n]g possess an exponentially fast mixing property [12]. It fol-
lows that a central limit theorem can be stated for the time-average
properties of functions of chaotic time series. That is, the time-
averaged r.v.’s on the left hand side of (6) converges in law to a
normal distributions whenN !1,

1

N

N�1X
n=0

g(F(n)(x0))
L�! N (m;�=

p
N); (7)

with

m =

Z
g(x)d� (8)

and

�2 =

Z
(g(x)�m)2d�

+2

1X
`=1

Z
(g(x)�m)(g(F(`)(x))�m)d�: (9)

The exact conditions onF under which (6) and (7) hold are
quite technical and still a subject of active research in ergodic the-
ory today. In this communication, we assume that the class of
chaotic models considered possess the properties (6) and (7) with-
out discussion.

3. PROBLEM STATEMENT

Let y = (y[1]; : : : ; y[N ]) be a length-N sample of a chaotic sig-
nal. Let
 = fF1;F2; : : : ;FKg be a set ofK possible chaotic
signal models for the dynamic ofy[n], or, alternately, let
 =
ff1; f2; : : : ; fKg be the set ofK predictors (3) associated with
the state-space modelsFk. The following problem is addressed:
given the sample ofy[n], which of the models from
 generated
the signal?

The models in
 can be obtained in one of the two following
fashion. If a physical model of the process generating the signal
is available, (1) and (2) are known explicitly. If only examples of
the time seriesy[n] are available, a nonlinear predictorfk can be
constructed [13].

At first glance, the classification problem may seem trivial.
Indeed, letMSE(Fk) be the mean-squared prediction error asso-
ciated with the modelFk for the signaly[n], i.e.,

MSE(Fk) =
1

N �M

N�1X
n=M

(y[n+ 1] � fk(x[n]))
2; (10)

and letF� (or f�) denote the true dynamic of the observed system.
Clearly,MSE(F�) = 0 since the systems considered are purely
deterministic. One may thus suggest the following classification
scheme:

1. computeMSE(Fk) for all the modelsFk 2 


2. assign to the signaly[n] the model whose MSE is equal to
zero.

In practice, however, there will always be some model mis-
match between the data and the models in the dictionary (i.e.,
F� 62 
) and none of the MSE’s will be strictly equal to zero.
It might still be suggested to assign to the signaly[n] the “best”
or “closest” model from
. A possible definition of the “best”
or “closest” model in
 is the model that yields the smallest pre-
diction error for the signal. The classification scheme would then
become

1. computeMSE(Fk) for all the modelsFk 2 


2. assign to the signaly[n] the model whose MSE is the small-
est, i.e.,argmin
MSE(Fk).

Since the MSE’s are empirical values computed from a chaotic
signal, they will show some “random” variations from one realiza-
tion to another. How will these variations affect the classification
process? Is there a way to “quantify” the effect of the variations on
the reliability of the classifications? It is possible to answer these
questions by resorting to the statistical interpretation of chaotic
systems of section 2.

4. PROPOSED SOLUTION

Let f� denote the predictor associated withF�. We have

MSE(Fk) =
1

N �M

N�1X
n=M

(fk(x[n])� y[n+ 1])2

=
1

N �M

N�1X
n=M

gk(x[n]); (11)



wheregk(x) = (fk(x)� f�(x))
2. Applying the ergodic ergodic

theorem (6) to (11), we can deduce that, for largeN , MSE(Fk)
will tend to an asymptotic value defined by

AMSE(Fk) = lim
N!1

MSE(Fk)

=

Z
gk(x)d�: (12)

Furthermore, by the central limit theorem (7),MSE(Fk) can be
considered as a Gaussian r.v. with aN (mk; �k=

p
N �M) distri-

bution wheremk = AMSE(Fk) and�k is given by (9).
Let us assume that the pairs(mk; �k), k = 1; : : : ; K are

known. Given the set of empirical prediction errorsMSE(Fk),
deciding on a model for the signaly[n] could then be viewed a
statistical decision problem and standard statistical tests could be
applied (an example will be given in section 5).

Unfortunately, the pairs(mk; �k) are not known in practice.
Indeed, the values of(mk; �k) depend onf� which is unknown.
Taking advantage of the ergodic properties of the models consid-
ered, it may be suggested using the empirical values ofmk and�k.
First,MSE(Fk) itself can be viewed as an estimate ofmk. Note
that this is equivalent to replacing the ensemble-average in (8) with
the time-average. Similarly,�k could be obtained by replacing the
ensemble-averages by the time-averages in (9) and truncating the
convergent series toL terms, withL� N �M .

We propose an alternative approach. From the length-N sam-
ple y, it is possible to compute a non-parametric predictor~f�
using any adequate non-parametric technique (e.g., a neural net-
work). This predictor can be viewed as an approximation of the
true predictorf�. Given an initial conditionsx0 and the approxi-
mate predictor~f�, it is possible to construct a time seriesfy[n]g
of any desired length simply by applying recursively (3). Let
~y = (~y[1]; ~y[2]; : : : ; ~y[T ]) be a lengthT realization obtained in
this way. Let~mk and~�2k be defined by (8) and (9) wheregk(x) =
(fk(x)�f�(x))2 has been replaced by~gk(x) = (fk(x)� ~f�(x))

2.
The easiest way to compute to evaluate~mk and~�2k is to use~y to
compute time-averages. That is, to use

~mk =
1

T �M

T�1X
t=M

~gk(~x[t]) (13)

and

~�2k =
1

T �M
(~gk(~x[t])� ~mk)

2 + 2

LX
`=1

1

T �M � `

�
T�`X
t=M

(~gk(~x[t])� ~mk)(~gk(~x[t+ `])� ~mk): (14)

SinceT can be made arbitrarily large, it is possible to obtain values
of ~mk and~�2k with any desired precision. For instance,L can be
chosen greater thanN .

If ~f� is a good approximation off�, it can be hoped that~mk

and ~�2k will be close tomk and�2k and they can be used instead
of the true values in the statistical models of the MSE’s. In fact,
the bias/variance trade-offs of~mk and~�2k will depend only on the
quality of the estimated predictor~f�. In our experiments, we have
found that using this approach based on the construction of a pre-
dictor as an intermediate step before the evaluation ofmk and�2k
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Figure 1: Normalized histogram of the MSE andN (0; 1) distribu-
tion.

yield better results than the direct evaluation by the empirical mean
and variances.

Remark: The method that has been proposed for the estimation
of the meansmk and variances�2k can be viewed as a kind of
“bootstrap” estimation: the original sampley is used to generate
a larger sample~y which is then used to estimate some parame-
ters related to the original sample. This is especially obvious if
“nearest-neighbors” types of predictors [14] are used for~f�.

5. PRELIMINARY RESULTS

A preliminary series of simulations has been conducted in order to
validate the proposed approach. In these preliminary experiments,
a standard 1-D chaotic models is used: the logistic equation. The
logistic model is defined by the recurrence/predictor

f : [0; 1]! [0; 1] : x[n+ 1] = �x[n](1 � x[n]); (15)

for some� 2 (0; 4). Note that for this simple model, it is not
known if the ergodic theorem (6) and the central limit theorem
(7) apply. However, this can be verified experimentally. All the
simulations described below were conducted in MATLAB.

Let us assume that a time seriesfy[n]g is generated by a lo-
gistic modelf� with �� = 3:8 and that it is attempted to predict
this time series with a logistic modelf with parameter� = 3:7.
Figure 1 gives the histogram of the distribution of the MSE for
the prediction of samples of lengthN = 1000 of the signal. This
histogram has been obtained as follows. First, 100 000 indepen-
dent initial conditionsx[0] where drawn from a uniform distribu-
tion on [0; 1]. Each initial condition was then used with (15) to
generate a signalx[n] of length1100 and the first 100 values of
x[n] were dropped in order to to get rid of transients and to insure
that the chaotic model is evolving “on” its attractor (i.e., that the
distribution of thex[n] for a givenn is the stationary distribution
�). For each of the 100 000 samples of length 1000,MSE(f)
was evaluated. Finally, the histogram of figure 1 was computed.
The distribution appears clearly Gaussian. This can be confirmed
by a Kolmogoroff-Smirnoff test [15]. It can be further verified
[15] that the values of the mean and the variance of the distribu-
tion of MSE(f) are the ones given by (8) and (9) withg(x) =
[(�� ��)x(1� x)]2. The ensemble-averages can be obtained by
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Figure 2: True and estimated MSE mean (a) and MSE variance
(b).

Monte-Carlo integration using the samples ofx[1000] [15]. In our
case, we getm = 3:276�10�4 and

p
N� = 3:407�10�5. Note

that with the simple model considered here, it is also possible to
show thatm / (� � ��)

2 andN�2 / (� � ��)
4. Again, these

relations can be verified numerically.
Next, we experimented with the approach proposed in sec-

tion 4. In this series of experiment, the true model was again
�� = 3:8 and the “supposed” model was� = 3:7. An approx-
imate predictor~f� was constructed using a Radial Basis Function
(RBF) Network [16]. Figure 2 presents the values o the MSE
mean estimator~mk and of the MSE variance estimator~�2k ob-
tained from (13) and (14) for a typical realization ofx[n], for sev-
eral lengthsN . The figure also includes the theoretical value of
mk and�2k obtained from (8) and (9). It can be verified that the
proposed method yields a pretty good approximation ofmk and
�2k.

The following simple application will illustrate the proposed
method. Let us assume that a dictionary of two logistic models is
available,
 = f�1 = 3:8; �2 = 3:7g. Let (x[1]; : : : ; x[50]) be a
sample of generated from the logistic equation with� = 3:72. Us-
ing the above method, we get:~m1 = 2:2�10�4, ~�1 = 3�10�6,
~m2 = 1:4 � 10�5, ~�2 = 1:9 � 10�7. It is clear that with these
values, the probability of classification error is negligible (can be
evaluated at< 0:005%).

Other results will be shown at the conference.

6. CONCLUDING REMARKS

Deterministic chaotic signals and stochastic processes have tradi-
tionally been viewed as alternative ways of looking at “random-
ness.” Thanks to advances in ergodic theory, it becomes now pos-
sible to adopt a unified view on both approaches. The statistical
interpretation of chaotic properties allow standard statistical tools
to be used with with low-dimensional deterministis chaotic sig-
nals. A simple example is the classification application that has
been proposed here.

However, the approach described in this paper relies on a purely
deterministic model of the signal. In practice, there will always

be some “randomness” in the signal that can not be explained by
a purely deterministic model, even a chaotic one. For instance,
there will always be some observation noise in (2). This will make
the estimation of the dynamical model and the interpretation of its
properties more difficult. Trying to include stochastic observation
noise in the model would certainly improve its usability.

The effect of the approximation error between~f� andf� on
the estimation ofmk and�2k also deserves further attention.
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