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ABSTRACT
This paper presents a new approachfor multi-band based automatic
speech recognition (ASR). Recent work by Bourlard and Herman-
sky suggests that multi-band ASR gives more accurate recogni-
tion, especially in noisy acoustic environments, by combining the
likelihoods of different frequency bands. Here we evaluate this
likelihood recombination (LC) approach to multi-band ASR, and
propose an alternative method, namely feature recombination (FC).
In the FC system, after different acoustic analyzers are applied to
each sub-band individually, a vector is composed by combining
the sub-band features. The speech classifier then calculates the
likelihood from the single vector. Thus, band-limited noise affects
only few of the feature components, as in multi-band LC system,
but, at the same time, all feature components are jointly modeled,
as in conventional ASR. The experimental results show that the
FC system can yield better performance than both the conventional
ASR and the LC strategy for noisy speech.

1. INTRODUCTION

Robustness is a very important issue in the field of automatic speech
recognition (ASR) research, especially to provide high recognition
accuracy in practical applications [1]. There are numerous studies
concerning the problem of robustness to additive noise conditions,
that provide us with reasonable guidelines for noisy speech recog-
nition [2, 3]. However, many techniques are based on the assump-
tions of ideal or artificial noise conditions such as white additive
noise. As a result their use in practical applications (e.g. colored
or band-limited noise) is limited.

Traditionally, speech recognition is performed by extracting
a set of acoustic feature vectors, which are calculated from the
whole frequency band of input speech. Even if only a part of the
frequency band is corrupted by noise, all the feature vector compo-
nents are affected. Recently, there have been a few studies which
model sub-band features independently [4, 5]. The acoustic like-
lihoods are computed independently for each sub-band, and then
combined before classification. Their preliminary experimental
results showed robustness under noisy/mismatched conditions.

We believe that multi-band ASR should be investigated for the
following reasons:

� There is a psychoacoustic evidence, as analyzed in a re-
cent paper by Allen [6]. In the paper, he mentioned The
Independent-Channel Model introduced by Fletcher et al.
According to Fletcher, human beings processes narrow fre-
quency sub-bands independently of each other in auditory
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Figure 1: Schematic diagrams of (a) full-band ASR (conventional),
and (b) multi-band ASR. The input speech is partially corrupted
by band-limited noise, which spreads over all features in (1), but
only the corresponding band in the case of (b).

perception. At some point of the processing, the outputs
from each sub-bands are recombined into a global decision.

� Statistical models of sub-band features may be more accu-
rate than full-band models, because of the higher dimension-
ality of the full-band feature space (curse of dimensionality).

� Ambient noise may be coloredand severely corrupt only few
frequency bands. Sub-band recombination strategies can be
designed to reduce the corrupted sub-band contribution to
the classification decision.

Figure 1 explains the main motivation and basic concepts of
multi-band ASR. The input speech is here corrupted by low fre-
quency noise. All the feature vector components obtained by
conventional acoustic analysis are affected by the noise. In the
multi-band approach, however, only the feature vector correspond-
ing to the corrupted frequency band is corrupted by the noise, the
information in the other bands is not affected.
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Figure 2: Diagrams of (a) full-band ASR (conventional), (b) multi-
band ASR (likelihood recombination), and (c) multi-band ASR
(feature recombination).

2. MULTI-BAND ASR

The basic strategy of multi-band ASR is to recognize speech by us-
ing multiple frequency bands whose acoustic features are extracted
individually. The original idea of this approach was proposed by
Bourlard and Hermansky et al. [4, 5]. They basically applied dif-
ferent classifiers for each band, then recombine the likelihoods at
some recombination level such as HMM state, phone, word, with
or without weighting functions.

In our work, we introduce another scheme to recombine the
multiple inputs, which composes a single feature vector by join-
ing the sub-band feature vectors together. Therefore, instead of
sub-band likelihood recombination we use sub-band feature re-
combination. The advantage of this approach is: (1) it is possible
to model the correlation between each sub-band feature vectors, (2)
acoustic modeling becomes simpler, (3) we can avoid considering
complicated weighting strategies.

Figure 2 illustrates basic concepts of the conventional ASR,
multi-band ASR with likelihood recombination and multi-band
ASR with feature recombination.

2.1. Acoustic Analysis for Multi-Band

As frontend of the recognizer, we use filterbank analysis, then mel-
cepstrum analysis based on the DCT (Discrete Cosine Transform).
In the full-band system, the DCT is applied to the whole filterbank

to obtain a series of the mel-cepstrum feature vector. In the multi-
band system, the filterbank output is split into several disjoint
bands, then the DCT is applied to each of the sub-bands individually
(see Figure 2-(b), (c)). In the case of the feature recombination,
a single mel-cepstrum vector is created by combining all of the
sub-band mel-cepstrum vectors.

2.2. Likelihood Recombination (LC)

In the likelihood recombination approach, each sub-band is mod-
eled independently. During the recognition process, different
speech classifiers are applied also independently to each sub-band,
and each classifier provides a set of recognition hypotheses and
recognition scores. Then all classifier outputs are combined to
obtain global recognition scores and a global decision.

According to Bourlard [4], recombination at the HMM state
level gives almost the same accuracy as recombination at higher
levels like phone, syllable or word level. State level recombination
is obviously much simpler to implement. Therefore, in this study
we adopt the HMM state as the recombination level.

Let oi and sj be an observation vector at frame (time) i and
an HMM state j. After calculating frame probability p(obi jsj) for
each band b, assuming independence of the bands, recombination
of the probabilities could be realized by multiplying all outputs:

p(oijsj) =
Y

b

p(obi jsj): (1)

However, it seems very improbable that all sub-band features
have the same amount of information for speech recognition. For
instance, a sub-band which has several formants may have more
information than others. In another case, we should reduce the
contribution from a band which has noisy elements.

A solution [7] is to weight the contribution from each sub-band
using probability exponents as follows:

p(oijsj) =
Y

b

p(obi jsj)
wb ; (2)

where wb is the weighting factor corresponding to the sub-band
b. In this paper, we investigate weights computed from the sub-
band signal-to-noise ratio (SNR) and from the inverse conditional
entropy of each band.

2.3. Feature Recombination (FC)

The main difference between the traditional (full-band) approach
and the multi-band feature recombination approach is at the acous-
tic analysis level. After the cepstral feature for each sub-band is
extracted individually, they are combined into one single vector,
which is the input to the classifier. Intuitively, feature recombina-
tion gives both the advantages of the conventional ASR and of the
multi-band ASR with likelihood recombination, namely:

� Band-limited noise affects only few of the feature compo-
nents, as with likelihood recombination.

� All feature components can be jointly represented by statis-
tical models, without any independence assumption, as in
conventional ASR.

Obviously feature recombination can be performed only at the state
level.



3. EXPERIMENTS

We use ARPA’s ATIS (Air Travel Information Service) continu-
ous speech recognition task to test the multi-band approach. The
speech data is recorded with a close-talk microphone in laboratory
environments. The training dataset consists 19,507 sentences by
528 speakers. We run ASR experiments on the official Dec.94 test
set of 981 sentences.

Our recognizer is based on AT&T’s ATIS Speech Recognizer
[8]. In the full-band (referred as conventional) experiments, we
use context independent phone HMM’s with 3 states, 16 mixture
Gaussian distribution, and a word bigram language model. The
frontend is based on the mel-cepstrum analysis of the input speech
sampled at 16kHz. The digitized waveform is analyzed with a
20ms window, that is shifted by a 10ms interval. Through the FFT
computation, we obtain 31 mel-frequency energy components, that
are processed by the cosine transform to provide vectors of 12
mel frequency cepstrum coefficients (MFCC) at a 100Hz frame
rate. For every input sentences, we subtract from all the MFCC
vectors the average (per sentence) MFCC vector (Cepstrum Mean
Subtraction).

Every frame feature vector is made of 39 components, con-
sisting of the 12 MFCC’s and of the frame energy in dB with their
1st and 2nd derivatives. In the multi-band experiments, we used
a number of mel-cepstrum features per band proportional to the
number of filters in each band.

In the full-band based (conventional) system,there are 31 filter-
banks as an input. For the multi-band approach, we use 2, 3, 4
and 6 sub-bands, defined by equal partitions of the mel-frequency
scale:

� 2 bands: (0-1850) (1691-8000) Hz

� 3 bands: (0-1155) (1050-2996) (2723-8000) Hz

� 4 bands: (0-950) (850-1860) (1691-3625) (3295-8000) Hz

� 6 bands: (0-650) (550-1155) (1050-1860) (1691-2996)
(2723-4824) (4386-8000) Hz

In our ASR experiments, we add several types of noise onto
clean speech data to test the recognizer under mismatched condi-
tions. We add the noise to the test speech waveform, but not to
the training data. The HMM’s are always trained under ideal (no
noise) conditions.

3.1. Likelihood Recombination (LC) with Weights

In this section, we evaluate multi-band ASR by likelihood recom-
bination, in which all classifier outputs are recombined at each
HMM state level. We add “lp-white” noise at 10dB SNR to test
data. “Lp-white” noise is an ideal type of noise, which is white
noise added only to the first frequency band, by applying an FIR
filter. Three sub-bands are used for all experiments in this section.

The acoustic likelihood of the three bands are recombined
according to Equation (2) using weights wb that are: (i) constant,
(ii) equal to sub-bandSNR computed at the frame level, and (iii) the
inverse of the conditional entropy of each sub-band. The sub-band
SNR (ii) is computed using the background noise level estimated
from minimum energy frame in the sentence. The conditional
entropy (iii) is computed from the a posteriori probabilities of all
HMM states. Sub-band weights are equal to the inverse of the
conditional entropy. All weights are normalized to sum up to the
number of sub-bands.

System Word error %

Full-band (conventional) 19.4

No weighting ([1:1:1]) 14.5
Sub-band SNR weighting 14.3
Entropy weighting 14.0

Constant weighting [0:1:1] 16.4
Constant weighting [0.5:1:1] 14.1
Constant weighting [0.75:1:1] 13.9

Table 1: Word error rate for various weighting strategies: like-
lihood recombination, 3-bands, added “lp-white” noise at 10dB
level.
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Figure 3: Word error rate for “lp-white” noise with various SNR’s
on full-band, 3-band LC and 3-band FC system.

Table 1 shows the recognition accuracy (word error rate) for
the various weighting strategies. In the table, “constant weighting”
refers to the use of a constant value for each band, as shown. The
“no weighting” system has constantweights equal to [1:1:1]. Since
the “lp-white” noise includes white noise only in the first sub-band,
to reduce the weight of the first band seems reasonable.

For “lp-white” noise, the recognition accuracy significantly
improves (from 19.4% to 14.5% word error) by using the three
band system with “no weighting.” Further modest improvement
is observed when we apply (ii) sub-band SNR weighting (relative
error reduction by 1.4%) and (iii) entropy weighting (3.5%).

Using the sub-band SNR as weights is a reasonable assump-
tion. However, we still have some difficulty to estimate the SNR
precisely, especially when the additive noise is nonstationary. The
entropy weighting is also reasonable and intuitive from the point
of view of information theory. Weighting the contribution of each
sub-band is a promising approach but further work is required into
investigating an effective weighting scheme.



Full- LC FC
Noise

band 2bands 3bands 2bands 3bands
babble 21.5 20.6 22.1 19.3 18.9
buccaneer1 37.1 35.7 50.5 34.3 42.6
buccaneer2 37.9 43.3 59.9 41.3 57.4
destroyerengine 30.6 29.3 29.0 25.2 25.9
destroyerops 20.0 21.9 26.4 19.5 19.7
f16 31.7 30.0 35.6 28.2 30.7
factory1 29.5 28.4 32.9 26.6 28.0
factory2 15.5 15.7 17.1 13.6 13.8
hfchannel 36.9 39.0 43.8 34.0 33.9
leopard 10.8 11.9 12.6 11.0 10.9
m109 14.5 15.1 16.1 13.3 13.3
machinegun 13.4 11.6 12.2 11.0 10.9
pink 35.5 35.2 43.2 34.0 41.5
volvo 9.0 10.0 11.1 8.8 9.0
white 40.8 52.3 66.5 50.5 65.5

Table 2: Word error rate for various types of noises with full-band,
two and three band LC and FC. The noise is added to clean speech
data at 10dB level.

3.2. Robustness to Various Types of Noise

In this section, we investigate the recognition performance of the
likelihood recombination (LC) and feature recombination (FC)
multi-band approaches for various types of noise. In addition
to “lp-white” noise, other types of noise (babble, buccaneer1,
destroyer-engine, etc.) from the NOISEX-92 database are added
to the test data.

Figure 3 shows the change of the recognition accuracy for “lp-
white” noise with various SNR’s, for LC and FC. FC is more
accurate except for very low SNR’s (0-5dB). Note that the LC
system assumes complete independency between each sub-band
likelihood. On the other hand, the FC system models the correlation
between each sub-band.

Table 2 summarizes the recognition results for 15 kinds of
additive noises using two and three band LC and FC as well as the
full-band system. In each case, the noise is digitally added to the
clean speech data at 10dB SNR level.

The FC system gives better performance than the LC system,
for all noise conditions in Table 2. Both two and three band system
implementations perform better than the baseline full-band system
for most types of noise. The two band FC system gives the best
overall results. The performance improvement over the baseline
full-band system depends on the type of noise and goes up to 18%
error reduction for “destroyer-engine” type of noise. The best
results for the multi-band system are obtained for the ideal “lp-
white” noise case (see Figure 3), where a 25% error reduction over
the full-band system is achieved.

For several noise types such as “babble,” “destroyer-engine,”
“factory2,” “hfchannel,” and “machinegun,” the multi-band system
gives better accuracy. These noise types have similar characteris-
tics, with signal energy concentrated on portions of the frequency
spectrum. On the other hand, the multi-band approach is less ac-
curate (up to 25% error increase for “white” noise case) than the
conventional ASR under conditions like “buccaneer2,” “leopard,”
“pink” and “white” noise, in which the noise energy is spread all
over the frequency spectrum. This result agrees with [9].

4. CONCLUSION

In this paper we studied the multi-band speechrecognition method.
In particular we examined two different approaches.

1) Likelihood recombination, in which the sub-band likeli-
hoods are considered independent.

2) Feature recombination, in which acoustic analysis is applied
to each band individually, and the resulting sub-band feature
vectors are modeled jointly.

We performed several ASR experiments after adding different
kinds of noise signals to the input speech. In general, we found that
multi-band ASR is more robust than conventional ASR when the
corrupting noise is concentrated on a portion of the spectrum. We
have also shown that the proposed feature recombination is more
effective than the likelihood recombination, at least in our HMM
framework.
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