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ABSTRACT

In this paper we use a Minimum Classification Error (MCE) train-
ing paradigm to build a speaker identification system. The training
is optimized at the string level for a text-dependent speaker identi-
fication task. Experiments performed on a small set speaker iden-
tification task show that MCE training can reduce closed-set iden-
tification errors by up to 20-25% over a baseline system trained
using Maximum Likelihood Estimation. Further experiments sug-
gest that additional improvement can be obtained by using some
additional training data from speakers outside the set of registered
speakers, leading to an overall reduction of the closed-set identifi-
cation errors by about 35%.

1. INTRODUCTION

In a hidden Markov model (HMM)-based speaker identification
system, each speaker to be identified is modeled by a set of HMMs
denoted�k = f�wk ; 1 � w � Wg, in which �wk is an HMM
characterizing the speech unitw of speakerk. According to the
application, the speech unit can be a subword unit, a word unit, or
an utterance unit. In the following, we denoteW the number of
speech units andK the number of speakers.

Speaker identification is usually carried out via likelihood (or
equivalently log-likelihood) computation. Given a sequenceO of
acoustic observations, the log-likelihood ofO, L(O; �k), is eval-
uated using each set�k. The identified speaker is the one whose
set of HMMs leads to the highest likelihood. More formally, for
closed-set speaker identification this scenario corresponds to the
following identification rule wherêk is the identified speaker:

k̂ = argmax
k

L(O; �k): (1)

In conventional speaker identification systems, each set of hid-
den Markov models�k is derived through Maximum Likelihood
Estimation (MLE). Given a collection of training acoustic obser-
vationsOk from speakerk, the parameters of�k are estimated so
that the likelihoodL(Ok; �k) of the training data is maximized.
The MLE training aims at approximating the underlying distribu-
tion of acoustic units of each speaker. This is a sub-optimal proce-
dure for classification [1] since the estimated distribution deviates
from the true one due to incorrect modeling assumptions and in-
sufficient training data. Hence, the “optimal” MLE criterion for
density estimation does not imply an “optimal” classifier design.

To overcome some limitations of the MLE training criterion, a
classifier design procedure called discriminative learning has been
introduced [2, 1]. The goal of discriminative training is to estimate
model parameters which minimize the classification errors of the

training data. This so-called Minimum Classification Error (MCE)
criterion maximizes the separation between speaker models and is
therefore consistent with the goal of speaker identification. MCE
training has been successfully applied for speech recognition [3],
string verification [4, 5], speaker verification [6, 7] and closed-set
speaker identification [8, 9]. In this paper, we propose a string-
based minimum classification error training for a text-dependent
speaker identification task, and discuss related issues such as the
choice of the misclassification measure and the effect of variance
reestimation. We also show how the use of additional training data
from outside the set of registered speakers can improve the overall
discrimination among speakers. Experiments carried out on a large
telephone speech database show that the proposed approach leads
to improved performance over a standard MLE-based system.

The organization of the paper is as follows. Section 2 intro-
duces the general framework of minimum classification error train-
ing. Experiments and results are presented in section 3 based on
a fixed-password speaker identification task. Section 4 concludes
the paper.

2. FRAMEWORK OF MINIMUM CLASSIFICATION
ERROR TRAINING

The goal of minimum classification error training is to derive a set
of speaker modelsf�k; 1 � k � Kg which minimizes the clas-
sification errors of the training data. This is achieved by deriving
an approximation of the total number of misclassification errors
of the training corpus as a functional form of all model parame-
ters. Then, a generalized probabilistic descent (GPD) algorithm
is applied to minimize this function with respect to these parame-
ters. To derive this functional form, GPD is based on 3 functions,
defined as follows.

First, a set ofdiscriminant functionsgk(O; �k); 1 � k � K,
is defined, wheregk(O; �k) usually represents the log-likelihood
of the observation sequenceO given the models�k for speaker
k. An observation sequenceO is classified using the following
decision rule:

k̂ = argmax
k

gk(O; �k): (2)

Then, a set ofmisclassification measuresis defined for each
speaker, which attempt to evaluate how likely an observation spo-
ken by speakerk is misclassified:

dk(O; �) = �gk(O; �k) +Gk(O; �); (3)

where� denotes the set of all speaker HMMs, andGk(O; �) is
the anti-discriminant function for speakerk. Gk(O; �) is defined



so thatdk(O; �) is non-positive ifO is correctly classified and
dk(O; �) is positive ifO is mis-identified. For speech recognition
problems,Gk(O; �) is usually defined as a collective representa-
tion of all competing classes, as follows:

Gk(O; �) = log

2
4 1

K � 1

X
j 6=k

exp[gj(O; �)�]

3
5
1=�

; (4)

where� is a positive coefficient used to control the weight of com-
peting classes.

It has been argued that for a speaker identification task, the use
of misclassification measures based on individual representation
of competing speakers (instead of a collective representation of
competing speakers) might be more appropriate [9]. Instead of
using a single misclassification measuredk(O; �) per speakerk,
several pairwise misclassification measures can be defined, with
respect to competing speakers:

dkj(O; �) = �gk(O; �k) + gj(O; �j); j 6= k: (5)

For a given speakerk, K � 1 misclassification measuresdkj()
can therefore be defined. However, in this paper we show how
to limit the number of misclassification measures associated to a
given speakerk to a smaller subset by using only the misclassi-
fication measures involving the N-best (N < K � 1) competing
speakers. Given an observation sequenceO and a speakerk, the
set of N-best competing speakers is the set of speakers whose cor-
responding discriminant functions are the closest togk(O; �k).
We denoteK(O; k;N) this reduced set of competing speakers.

Each misclassification measuredkj(O; �) is embedded into
a smooth empiricalloss functionwhich approximates a loss (be-
tween 0 and 1) directly related to the number of classification er-
rors:

lkj(O; �) =
1

1 + exp(�adkj(O; �))
: (6)

The positive constanta is used to control the slope of the decision
threshold. Ifdkj is much smaller than zero, which corresponds to
a correct classification, the loss is negligible. Whendkj is signifi-
cantly positive, the loss becomes close to 1.

The overall empirical loss associated with a given observation
O is given by:

l(O; �) =
X
k

X
j2K(O;k;N)

lkj(O; �)1k(O); (7)

where1k(�) is the indicator function defined as:

1k(O) =

(
1 if O is uttered by speakerk;
0 otherwise:

(8)

Given a set of observationsO, the total loss is:

l(O; �) =
X
O2O

l(O; �); (9)

a function of all model parameters.
Using a gradient descent algorithm, it becomes possible to de-

rive all model parameters so that the total loss is minimized:

�n+1 = �n � �nr�n l(O; �n); (10)

wheren denotes the iteration number of the GPD algorithm,r�n l(�)
is the gradient of the loss function, and�n is the step size.

3. EXPERIMENTAL EVALUATION

3.1. Database description

The speech database is part of a large database of spoken phrases
recorded digitally over the telephone network by AT&T. Volun-
teers and paid subjects recorded utterances from their home, office
or other phones by dialing a toll-free number, and were encour-
aged to use a variety of phones, excluding speakerphones. The
data used for the purpose of this evaluation consists of a phrase
common to all speakers (“I pledge allegiance to the flag”).

The database contains utterances spoken by 50 male speakers.
Each speaker provided 6 tokens of the common phrase in a sin-
gle training session. Two tokens of the common phrase were also
recorded in each of 25 testing sessions. Consequently, a total of 50
test utterance tokens are available from each speaker.

3.2. Front-end processing

The signal is first passed through a 3200Hz lowpass anti-aliasing
filter. A 300Hz highpass filter is then applied to minimize the ef-
fect of processing in the telephone network. The resulting signal is
pre-emphasized using a first order difference and 10th order linear
predictive coding (LPC) coefficients are derived every 10ms over
30ms Hamming windowed segments. The 10 LPC coefficients are
converted to 12th order cepstral coefficients (LPCC) and a feature
vector of 24 components, consisting of 12 LPCC and their first
derivatives is produced at each frame.

3.3. System description

For each speaker, only 3 utterance tokens from the training ses-
sion are used to train a whole-phrase unit continuous density left-
to-right HMM and one silence unit using MLE. The number of
model states is 30 for the whole-phrase unit and 3 for the silence
unit. The nominal number of mixtures per state is 4. A baseline
system is built by estimating the HMM parameters using a stan-
dard segmentalK-means algorithm [10]. A fixed global diagonal
covariance matrix is used in this baseline system.

Speaker identification experiments are performed in closed set
mode, meaning that the goal is to identify which of the registered
speakers spoke a given utterance. In these experiments, we are
interested in identifying the speaker from small groups of speakers.
Two different group sizes (5 and 10 speakers) are considered.

In a first set of experiments, 140 5-speaker groups are created
by uniformly selecting the speakers from the entire customer popu-
lation. A given speaker can therefore appear in 14 different groups.
The goal is to identify the speaker of 250 (50 test utterances per
customer, 5 customers per group) test utterances per group. The
identification tasks are carried out for each of 140 groups.

In a second set of experiments, 70 groups of 10 speakers each
are created. These groups are obtained by combining the 5-speaker
groups. A total of 500 (50 test utterances per speaker, 10 speakers
per group) test utterances per group are classified as one of 10
speakers in each of the 70 groups. Experimental results are given
in terms of identification errors averaged over all test utterances.
The total number of test tokens is about 35000.



# of MCE iterations 20 40 60 80 100
MCE (N=4) 2.40 2.40 2.48 2.55 2.57
MCE (N=1) 2.23 2.14 2.08 2.10 2.06
MLE (baseline) 2.59

Table 1: Speaker identification error rates (%), group size 5, MCE
training usingN = 4 andN = 1 (N denotes the number of
competing speakers).

# of MCE iterations 20 40 60 80 100
MCE (N=4) 4.09 3.74 3.60 3.53 3.52
MCE (N=1) 3.49 3.30 3.20 3.19 3.17
MLE (baseline) 4.32

Table 2: Speaker identification error rates (%), group size 10, MCE
training usingN = 4 andN = 1 (N denotes the number of
competing speakers).

3.4. Experimental results

3.4.1. MCE setting

For each speaker group, the MCE training is performed by updat-
ing all parameters (means, global covariance and mixture weights)
of the initial MLE models using (10), whereO is the set of train-
ing utterances from the speakers in the group (e.g.when the group
contains 5 speakers,O contains3�5 = 15 training tokens). How-
ever, instead of updating the model parameters once after comput-
ing the gradient of the loss over the whole training data set, the loss
function is evaluated and the models are updated training token
by training token. Once the whole training corpus has been pro-
cessed, the training is re-iterated a specified number of times. In
most experiments, the training is iterated 100 times and the models
obtained after every 20 iterations are saved to monitor the conver-
gence of the identification rate. A small slope (a = 0:1) is chosen
for the sigmoidal loss functions, which forces the models to be
updated even if the training data are correctly classified.

3.4.2. Influence of the number of misclassification functions

Two different values for the sizeN of the competing speaker set
K(O; k;N) are used. Experiments were carried out withN = 1
where only one misclassification function per speaker is used and
also forN = 4, where 4 misclassification functions per speaker
are used. Results are given in Tables 1 and 2 for group sizes 5 and
10.

We first observe that for group size 5, whenN = 4, MCE
leads to a slight improvement over MLE when the number of it-
erations is small (20 or 40). However, it appears that iterating the
training does not lead to stable set of models since the improve-
ment is not consistent as the number of iterations increases. We
assume that this is related to the small amount of training data and
to the use of too many misclassification functions which makes it
difficult to simultaneously minimize all loss functions. By reduc-
ing the number of misclassification functions to 1 (N = 1), the

# of MCE iterations 20 40 60 80 100
MCE updated variance 2.23 2.14 2.08 2.10 2.06
MCE, fixed variance 2.38 2.28 2.22 2.20 2.14

Table 3: Speaker identification error rates (%), group size 5,N =
1, with and without updating the variance during MCE training
(first line taken from table 1).

# of MCE iterations 20 40 60 80 100
MCE, updated variance 3.49 3.30 3.20 3.19 3.17
MCE, fixed variance 3.92 3.65 3.47 3.37 3.28

Table 4: Speaker identification error rates (%), group size 10,N =
1, with and without updating the variance during MCE training
(first line taken from table 2).

training process appears to stabilize and a monotonic reduction of
the identification error is obtained as the number of iterations in-
creases. Compared to the baseline MLE system, MCE training
leads to a 20% reduction of the identification error rate.

Better results are also obtained for group size 10 whenN = 1.
Approximatively 25% reduction of the identification error rate is
obtained over the standard MLE system. We also point out that
the identification error rate monotonically decreases as the number
of iterations increases, even when more than one misclassification
measure (N = 4) is used. This suggests that for group size 10,
the amount of training data becomes large enough to get a stable
estimate of MCE models. A possible explanation is that when the
number of speakers per group increases, the amount of training
data used to build a given model also increases. However, using a
single misclassification measure leads to better results soN is set
to 1 in all subsequent experiments.

3.4.3. Influence of the variance reestimation

The baseline MLE system uses HMMs with a fixed global vari-
ance. This is used as the initial estimate in MCE models. In the
previous set of experiments, model variances are updated during
the MCE training and therefore become specific to each speaker
and group. Tables 3 and 4 present identification errors on group
size 5 and 10 with and without updating the variances. It appears
that adapting the variances leads to better results and to a faster
convergence of the identification error rate.

3.4.4. Extended training data set

The amount of training data is increased by adding in each group
20 additional training utterances from 10 speakers outside the group.
We assume that these extra-training utterances come from a “dum-
my” background speaker whose initial model was created by con-
catenating speaker independent phone-HMMs derived from an in-
dependent database. The MCE training is performed as previously,



# of MCE iterations 20 40 60 80 100
Original training corpus 2.21 2.08 2.06 2.01 2.02
Extended training corp. 1.85 1.74 1.68 1.65 1.64

Table 5: Speaker identification error rates (%), group size 5, with
and without extended training data set.

# of MCE iterations 20 40 60 80 100
Original training corpus 3.44 3.20 3.16 3.13 3.10
Extended training corp. 3.18 2.95 2.87 2.85 2.78

Table 6: Speaker identification error rates (%), group size 10, with
and without extended training data set.

except that there are now 5+1 (or 10+1) speakers in each group1.
To summarize, the training corpus per group consists of 3 training
utterances per speaker and 20 extra background utterances. During
the training, all speaker models as well as the background model
are updated.

Closed-set identification results are given in Tables 5 and 6 for
group size 5 and 10. The first line of the tables correspond to the
situation where only the 3 training utterances per speaker for each
group are used2. It appears that the use of the extended corpus
significantly decreases the identification error rate, leading to an
overall reduction of 35% for both group size 5, and 10 with respect
to the original MLE-based system. It is possible that this extended
training set effectively provides more training data to learn the de-
cision rules, and therefore leads to a more robust estimate of the
classification boundaries.

4. CONCLUSION

A Minimum Classification Error training paradigm has been ap-
plied on a small set text-dependent speaker identification task. Ex-
periments performed on a telephone speech database have shown
that the MCE-based system outperforms the MLE-based system
by about 20 to 25% on a closed-set evaluation. It appears that ad-
ditional improvement can be obtained by using some additional
training data from speakers outside each group. This suggests that
the MCE training scenario can be useful when the number of train-
ing data is very small and the resulting MLE-models are poorly
estimated.

1The background model was originally introduced for open-set exper-
iments. In the MCE training process, an additional misclassification mea-
sure is actually added to discriminate the background speaker from speak-
ers in the group.

2The first lines of Table 5 and 3 (Table 6 and 4 for group size 10) are
slightly different since in the extended training set experiments a back-
ground model is also trained, while there was no such background model
in previous experiments.
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