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ABSTRACT

A deterministic approach to blind nonlinear channel equal-
ization and identi�cation is presented. This approach ap-
plies to nonlinear channels that can be approximately lin-
earized by �nite memory, �nite order Volterra �lters. Both
the Volterra equalizers and the linearized channels are iden-
ti�ed. This method also applies to blind identi�cation of
linear IIR channels. General conditions for existence and
uniqueness are discussed and numerical examples are given.

1. INTRODUCTION

Identi�cation and equalization of nonlinear systems are prob-
lems of practical interest in many problems where the sys-
tems cannot be accurately modeled as linear. Blind linear
identi�cation and equalization problems have been stud-
ied by many researchers; however, relatively little work has
been done in the �eld of blind nonlinear system identi�-
cation and equalization. Blind approaches have been pro-
posed for restricted classes of nonlinearities such as linear-
zero memory-linear systems [2] or strict Volterra models of
nonlinearity [1]. Blind �nite alphabet methods [5] su�er
from ambiguity in the solution. The work in [1] describes
a very elegant approach for �nding linear FIR equalizers
for nonlinear channels. However, the results in [1] only ap-
ply to nonlinear channels that can be exactly described by
Volterra �lters.

In this paper we consider blind equalization of a very
general class of nonlinear systems, those that can be approx-
imately linearized by �nite order, �nite memory Volterra �l-
ters. We generalize the approach in [7] to show that under
rather general conditions it is possible to blindly determine
P th order linearizing equalizers and the linearized channels
represented by the cascade of the nonlinear channel and
the P th order equalizer. As a special case we apply this
approach to blindly identify linear IIR channels.

This paper is organized as follows. Section 2 introduces
notation and develops the problem statement. The equa-
tions needed for linearization and identi�cation are derived
in Section 3. In Section 4 rudimentary conditions for identi-
�ability and linearizability are given. Examples illustrating
the e�ectiveness of our approach are given in Section 5.
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2. PRELIMINARIES

2.1. Notation

Bold face symbols denote vectors, (�)T denotes the trans-
position operator, and � represents convolution. TL[x], de-
scribes a Toeplitz matrix with L + 1 columns constructed
from the vector x as follows.

TL[x] =

2
66666664

x(0) 0 0 � � � 0
x(1) x(0) 0 � � � 0
...

.. .

x(L) � � � x(0)
...

...
x(N) � � � x(N � L)

3
77777775

(1)

The notation Lh denotes the memory of the FIR �lter rep-
resented by the impulse response vector h. Hence, we may
write the convolution y(l) = (x � h)(l) in vector form as
y=x*h=TL

h
[x]h. Finally, the notation h(z) denotes the

polynomial
PLh

l=0 h(l)z
�l.

2.2. Diagonal Coordinate System

The Volterra �lter [4] is used in this paper to implement
an equalizer to a nonlinear system. In order to facilitate
the use of linear algebraic methods, we express the Volterra
�lter output as a parallel combination of linear �lters ap-
plied to nonlinear combinations of the input. We call this a
diagonal coordinate system (DCS) representation since the
linear �lter coe�cients are obtained from the diagonals of
the sampled hypercube de�ned by the Volterra kernels.

Let x(l) be the input to a Volterra �lter G of order
P and memory L. The output sequence y(l) is commonly
written as

y(l) =

PX
p=1

LX
l1=0

� � �

LX
lp=0

Gp(l1; : : : ; lp)x(l � l1) � � �x(l � lp)

(2)
without loss of generality the kernels Gp(l1; : : : ; lp) are as-
sumed to be symmetric under permutation of the variables
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Figure 1: Volterra �lter in Diagonal Coordinate System

l1; : : : ; lp hence (2) is rewritten as

y(l) =

PX
p=1

X
0�l1�����lp�L

Gsymm
p (l1; : : : ; lp)x(l� l1) � � � x(l� lp)

(3)
There are Dp = D(p;L) = (p+L� 1)!=((p� 1)!L!) possible
combinations of the parameters l1; : : : ; lp for a given poly-
nomial order p [3]. We introduce the change of coordinates
(DCS) l1 = l and l�+1 = l+ r� for � = 1; : : : ; p� 1 and the
notation

xp;i(l) = x(l)

p�1Y
�=1

x(l � r(i)� )

gp;i(l) = Gsymm
p (l; l+ r

(i)
1 ; : : : ; l + r

(i)
p�1) (4)

where the superscript i denotes a given combination of the
r� and i = 1; : : : ;Dp. Using this notation we write the
Volterra �lter output (3) in DCS format

y(l) =

PX
p=1

DpX
i=1

(xp;i � gp;i)(l) (5)

Thus the Volterra �lter output is given by a sum of linear
�lters acting on the various pth order products of the input
with itself as illustrated in Figure 1.

Note that we may rewrite (5) in vector form as

y = G[x]

=
�
TL1;1 [x1;1] � � �TLP;DP [xP;DP ]

�
g

= T [x]g (6)

where g is the vector of concatenated impulse responses

g =
�
g1;1

T � � �gP;DP
T
�T

and Lp;i is the length of gp;i.

2.3. Problem Statement

Assume that oversampling or a sensor array is used to gener-
ate M outputs representing M nonlinear channels H(m)[�],
m = 1; : : : ;M applied to an input s(l). Further, suppose
the following is true:

Assumption 2.1 For all channels represented by the op-
erators H(m)[�], m = 1; : : : ;M there are integers P;L such

that there exist P th order Volterra �lters G(m)[�] of maxi-

mum memory L whose cascade connection with H(m)[�] cre-

ate linear systems Q(m)[�]. That is, Q(m)[�] = G(m)[H(m)[�]]
has negligible nonlinear behavior.

s(l)

Q(m)[�]

H(m)[�]
x(m)(l)

G(m)[�]
y(m)(l)

Figure 2: Channel m with linearizing equalizer.

The problem is as follows. Given only the observations of
the channel outputs, determine the Volterra �lter equal-
izers and the linear channels that result from the cascade
connection of the channels with their respective equalizers.
Further, recover the input signals s(l).

3. IDENTIFICATION EQUATIONS

To simplify notation we assume identical �lter lengths for all

channels, e.g., Lq(m) = Lq and L(m)
p;i = Lp;i. The output of

the overall channel Q(m)[�] depicted in Figure 2 is expressed
as

y
(m) = s � q

(m) = G(m)[x(m)] (7)

where G(m)[x(m)] = T
�
x(m)

�
g(m) is de�ned analogously to

(6).
We now proceed with a derivation resembling that given

in [7]. Consider any two di�erent channels m and n. Equa-
tion (7) implies

y
(m)

�q
(n) = s�q

(m)
�q

(n) = s�q
(n)
�q

(m) = y
(n)
�q

(m) (8)

Note that if the linearizing �lters gp;i were known, then
the results from [7] could be directly applied to identify the

linearized channels represented by q(m). In the problem at
hand, we need to �nd not only the vectors q(m) but also
the vectors g(m).

Write (7) in matrix form as follows

y
(m) = TLq [s]q

(m)

= T [x(m)]g(m)

=

P;DpX
i;p=1;1

x
(m)
p;i � g

(m)
p;i (9)

By using (9) in conjunction with (8) we �nd identi�cation

equations that de�ne the vectors g(m). Denote q(m;n)p;i =

g
(m)
p;i � q(n) and expand the left hand side of (8) to obtain

y
(m)

� q
(n) =

 
P;DpX
i;p=1;1

x
(m)
p;i � g

(m)
p;i

!
� q

(n)

=

P;DpX
i;p=1;1

x
(m)
p;i � q

(m;n)
p;i

= T
�
x
(m)
�
q
(m;n) (10)



where q(m;n) =
h
(q

(m;n)
1;1 )T � � � (q

(m;n)
P;DP

)T
iT

. We can now

rewrite (8) as

T [x(m)]q(m;n) = T [x(n)]q(n;m) (11)

Let X (m;n) = [T [x(m)]
... �T [x(n)]]. Equation (11) implies

that the vector [(q(m;n))T (q(n;m))T ]
T
is in the null space of

X (m;n) .
If the null space of X (m;n) is rank 1, then we can deter-

mine all the vectors q(m;n) up to a constant multiplicative
factor. As we shall see, a necessary condition for a rank 1

null space is that the polynomials q
(m;n)
p;i (z) have no com-

mon zeros over m, n. Assuming for the moment that this is

indeed the case, we can write the polynomial q(m;n)p;i (z) as

q
(m;n)
p;i (z) = g

(m)
p;i (z)q

(n)(z). In order to perform this factor-

ization of q(m;n)(z) we take g(m)
p;i (z) as the common factor

of the polynomials q(m;1)p;i (z) through q(m;M)
p;i (z). Similarly

we �nd q(n)(z) by �nding the common factor of q(1;n)1;1 (z)

through q
(M;n)
P;DP

(z).
The procedure developed here also applies to identi�ca-

tion of linear IIR channels. The special case of a Volterra
�lter whit P = 1 and DP = 1 is a linear FIR �lter with
impulse response vector g1;1. Since Figure 2 implies that

h(m)(z)g(m)
1;1 (z) = q(m)(z) where q(m)(z) is also FIR, we

conclude that

h
(m)(z) =

q(m)(z)

g
(m)
1;1 (z)

(12)

That is, the zeros of g(m)
1;1 (z) are the poles of the channel,

while the zeros of q(m)(z) are the zeros of the channel.

4. IDENTIFIABILITY CONDITIONS

Due to space constraints we present only rudimentary iden-
ti�ability results. More extensive results will be presented
in a future publication. The results given here are an ex-
tension of those in [7].

Theorem 4.1 The multichannel system H(m)[�] for M �

2 can be uniquely linearized and identi�ed by solving the
equations

X
(m;n) [(q(m;n))T (q(n;m))T ]

T
= 0 (1 � m � n �M) (13)

i� 1)assumption 2.1 holds, 2) the matrices X (m;n) are rank�PP

p=1

PDp

i=1
(Lp;i + 1)

�
� 1 (i.e., the X (m;n) have rank 1

null space) and, 3) There is a subset of g(m)
p;i (z) of size

greater or equal to 2 that is coprime (or have no common
roots) with respect to p, i, m.

Proof: By construction, [(q(m;n))T (q(n;m))T ]
T
is in the

null space of X (m;n) . The rank condition assures uniqueness
up to a common multiplicative constant. Hence, the only

problem left is that of uniquely factoring q
(m;n)
p;i (z) in the

form of the product q(m;n)p;i (z) = g
(m)
p;i (z)q

(n)(z). This is
guaranteed by the third assumption. The common roots of

s(l)

H(m)[�]

all zero
LTI

all pole
LTI

memoryless
nonlinearity

x(m)(l)

Figure 3: Block diagram of unknown channels in example.

q
(m;n)
p;i (z) corresponding to the m, p, and i of the subset in

assumption 3 are exactly the roots of q(n)(z).

Note that the ability to uniquely factorize q
(m;n)
p;i (z)

stems from both the redundancy introduced by having mul-
tiple channels (m) and the redundancy introduced by the
DCS representation of the equalizer (p, i). The latter rep-
resents a new form of redundancy in the context of blind
equalization. Clearly, in the special case of blind linear IIR
channel identi�cation the redundancy is introduced solely
by the multiple channel construction.

Theorem 4.1 gives the general conditions for unique
channel and equalizer identi�ability. More explicit theo-
rems, in the spirit of [7], are needed to provide further in-
sight into the requirements on the channels and the input
signal. One such theorem is stated next without proof. The
proof is similar in spirit to that for the equivalent theorem
in [7].

Theorem 4.2 The channels cannot be uniquely identi�ed

if, given p, i, there is a common root shared by q(m;n)p;i for
1 �m;n �M .

This implies that a necessary condition for unique iden-
ti�ability is that there be no common root for q(m) over
1 � m � M . Moreover, theorem 4.2 in conjunction with
the third condition of theorem 4.1 implies no common roots

may exist for g(m)
p;i over 1 � m �M .

Note that while the conditions for identi�ability are

stated in terms of the g(m)
p;i and q(m), the actually represent

conditions on the nonlinear channels H(m)[�]. This follows

from the fact that g(m)
p;i and q(m) de�ne the inverse of the

channel operators H(m)[�].

5. NUMERICAL RESULTS

5.1. Example 1

To illustrate the proposed algorithm we solve a simple ex-
ample of nonlinear channel linearization and identi�cation.
Throughout this example we use zero and pole information
to describe linear �lters since the linearization and identi�-
cation are accurate up to a common multiplicative factor.

Assume there are 3 channels of the form depicted in
Figure 3. The zeros, poles and nonlinearity for each channel
are speci�ed in Table 1. The input sequence used here
is from the alphabet [�5;�3;�1; 1; 3; 5] with equiprobable
symbols.

It is obvious by inspection that there exists a Volterra
�lter of polynomial order 3 and memory 2 that serves as



m zeros poles nonlinearity
1 0:5 �0:25� 0:37i Inverse of
2 0:4 �0:25� 0:3i operator
3 0:35 �0:24� 0:25i (�) + (�)3

Table 1: Channel parameters in example.

m n p i zeros
1 2 1 1 0:4 �0:25� 0:37i �0:25 + 0:37i
1 2 3 1 0:4 �0:25� 0:37i �0:25 + 0:37i
2 1 1 1 0:5 �0:25� 0:3i �0:25 + 0:3i
2 1 3 1 0:5 �0:25� 0:3i �0:25 + 0:3i
1 3 1 1 0:35 �0:25� 0:37i �0:25 + 0:37i
1 3 3 1 0:35 �0:25� 0:37i �0:25 + 0:37i
3 1 1 1 0:5 �0:24� 0:25i �0:24 + 0:25i
3 1 3 1 0:5 �0:24� 0:25i �0:24 + 0:25i
2 3 1 1 0:35 �0:25� 0:3i �0:25 + 0:3i
2 3 3 1 0:35 �0:25� 0:3i �0:25 + 0:3i
3 2 1 1 0:4 �0:24� 0:25i �0:24 + 0:25i
3 2 3 1 0:4 �0:24� 0:25i �0:24 + 0:25i

Table 2: Zeros of q
(m;n)
p;i (z).

an exact linearizer. Speci�cally, the Volterra �lter is con-
structed by the cascade connection of the memoryless non-
linearity f(u) = u+u3 followed by a linear �lter of memory
2 whose zeros are equal to the poles in the channel. Indeed,
when implementing the above algorithm for this example,
(Lp;i = 3 for all p, i,) we get, in this noiseless case, the

zeros of the �lters q(m;n)p;i corresponding to the expected ze-
ros and poles of the \unknown" channel, as summarized in
Table 2. An input of less than 20 symbols is more than suf-
�cient to identify the channels. By appropriately grouping

the zeros in Table 2 we determine the DCS �lters g
(m)
p;i of

the linearizer and the linear FIR �lters q(n) of the linearized
channels. For example, the only zeros common to rows cor-
responding to m = 2, p = 3, and i = 1 are �0:25 � 0:3i.

These are the zeros of g(2)3;1(z). We �nd that in this case

g
(2)
1;1(z) = g

(2)
3;1(z) and indeed

x
(2)
1;1(z)g

(2)
1;1(z) + x

(2)
3;1(z)g

(2)
3;1(z) = s(z)q(2)(z) (14)

where q(2)(z) is the �rst order polynomial with zero 0:4.

We notice that q(2)(z) corresponds to the unique common
zero in all the rows where n = 2, as expected.

5.2. Example 2

To illustrate the robustness of the algorithm we add noise
and consider nonlinear channels which cannot be exactly
equalized by a �nite order Volterra �lter. The channel poles
and zeros are the same as in Example 1 and the memory-
less nonlinearity is w(u) = u � 0:1u3. By inspection it is
clear that the inverse operator has in�nite polynomial or-
der. However, we will approximately equalize the channels
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Figure 4: Constellations for Example 2: a) Before
equalization. b) After equalization.

using 3rd order Volterra �lters as in the previous exam-
ple. The channel outputs are corrupted by independent
white Gaussian noises, that are independent of the input.
The signal to noise ratio is 50 dB. In this example the in-
put symbols are complex and equiprobable with alphabet
[�5;�3;�1; 1; 3; 5]� i[�5;�3;�1; 1; 3; 5].

In order to factorize q
(m;n)
p;i (z) we �rst round the esti-

mated roots to the second decimal place, then search for
the common roots.

The results of equalization using only 50 input symbols
is shown in Figure 4. If we project each equalized symbol
to the closest symbol in the alphabet, then the equalized
symbols exactly match the input symbols.
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