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ABSTRACT

Real time image processing uses SIMD engines to ac-
celerate the computation of algorithms as DCT, FFT or DWT.
So, a good skewing scheme becomes essential for avoid-
ing memory bank conflicts. In this paper a memory system
is introduced for the efficient in-place computation of such
transforms. It consists ofM = 2m memory modules, pro-
viding parallel access toM image points whose patterns are
a row or a column, the interval in both cases being2l, l � 0.
The efficiency of our design is proved through the compu-
tation of the 2D-DWT.

1. INTRODUCTION

Image processing often uses SIMD engines to exploit the
parallelism inherent to some typical operations. Video pro-
cessor chips (i.e. VLSI chips for multimedia processing and
transmission) are a clear example [6]. In this context, a
memory system with high bandwidth becomes essential.

The in-place computation of two dimensional orthogo-
nal transforms, of great interest in image processing, could
be accelerated if the memory system allows parallel access
to elements in a row, column or sub-matrix of the image,
with interval2l. To achieve this goal, standard interleaved
memory systems made of a number of banks power of two
must be discarded because the required elements cause bank
conflicts. Memory systems involving a prime number of
memory modules have been proposed foraccessing to a
number of conflict-free patterns. Voorhis and Morrin [5],
presented a system withpq o pq+1 banks, allowing the ac-
cess to blocks ofp � q adjacent elements in a row, column
or sub-matrix. Park [4] improved this design by simplifying
the memory address generation circuit in the case ofpq + 1
modules. Recently, new memory systems have been pro-
posed to provide these access patterns. Park and Harper [2]
have extended Park’s design [4], using2m + 1 banks mem-
ory system, allowing parallel access to2m points from a
row with stride2l, whilst in the case of columns and sub-
matrices the only permitted interval is 1.

But using a prime number (2m + 1) of memory mod-
ules complicates the assignment (or skewing) functions re-
quired to calculate the bank and address corresponding to
each element, due to the arithmetic involved, so the address-
ing and data alignment circuits become complex. Besides,
it results in a waste of memory storage space. To avoid
these drawbacks, Deb[3] has recently proposed a system
with M = 2m banks, applying different assignment func-
tions to different sections of the image matrix (multiskew-
ing). This design permits the access to2m points with a
large class of patterns (rows, columns, diagonals, coils, etc.)
using simple circuits. However, he only considers the case
in which the image matrix has dimensionN � N and the
number of banks is N.

In this work we introduce a memory system with M=2m

memory modules, so that it requires simple memory bank
and address assignment functions. It allows conflict-free
parallel access to M points in any row or column from an
image of dimension NxN (M = 2m < N ), being2l, l � 0,
the interval between two consecutive elements . Thus, the
systems appears to be well fitted for the ’in-place’ compu-
tation of two dimensional transforms like FFT, DCT, Gaus-
sian Pyramid and, specially, wavelets in SIMD computers.

Section 2 briefly introduces the DWT. In section 3 the
memory system is described and several accessing patterns
are discussed. The computation of the DWT in a SIMD
machine using the proposed memory system is studied in
section 4. Finally, in section 5, we establish the main con-
clusions.

2. AN APPROACH TO DWT

Wavelets appear in a wide range of areas, specially in the
context of computer graphics, due to its temporary and fre-
quency characteristics [1]: image coding and compression
[7][8], image processing using multiresolution techniques,
modeling of curves and surfaces, radiosity computations,
etc.

The unidimensional DWT splits the original signal into
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Figure 1:Dyadic binary tree

a high-pass and a low-pass signal. The splitting process
goes on, in a recursive way, always being applied over the
low-pass signal. This way, we obtain a pyramid with a max-
imum number of levels equal tolog2(N ), see figure 1.

At each level of the pyramid, an input sequencex(n) is
filtered by using low-pass and high-pass filter coefficients
h(n) andg(n) respectively:

y(n) =
X

k

h(k)x(2n+ k) n; k 2 Z (1)

z(n) =
X

k

g(k)x(2n+ k) n; k 2 Z (2)

The sequenceh(n) is the smoothing or scale filter, while
the sequenceg(n) is the detail or wavelet filter.

The number of filter coefficients is very variable.In this
paper DAUB4, a four-coefficient Daubechies wavelet [9] is
used for simplicity. This won’t suppose a loss of generality.

The computational structure of the in-place pyramidal
algorithm is shown in figure 2. White circles represent the
results of the high-pass filters (zi) while black circles rep-
resent the original sequence at level 0, and the pointsy(i)
obtained after the low-pass filtering in further levels. These
last points will be used when computing a new levell. The
figure shows the increasing interval, of value2l, between
them.

Most of the usefulness of DWT rests on the fact that it
can severely truncate turning into sparse results [9]. Many
negligible coefficients appear in the high-pass octaves ob-
tained, reducing the amount of information to deal with,
so that going on with the iteration becomes unnecessary in
many applications. So, just a few first levels are usually
computed, typically from 3 to 7.

The two dimensional DWT is attained by applying inde-
pendently the low-pass and high-pass filters to both the rows
and columns of the initial image. This way, we obtain four
new images, depending on the pair of filters employed in
its generation, four times smaller than the initial one. If we
would permute the results after each filtering stage, group-
ing the results from the high-pass aside the results from the
low-pass, we would arrive to a point distribution as the one
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Figure 2:Computational dependences in a four coefficients DWT.
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Figure 3:The octaves of a three levels two dimensional DWT

in figure 3. In this figure, HLk for example, is the result of
a high-pass filtering of the rows, and a low-pass filtering of
the columns, at level k of the pyramid.

However, working ’in-place’, as we do, we will arrive
to the situation depicted in figure 4. We show the original
matrix (level 0) and the two first levels. Again, we represent
as black circles the points that will take part in the following
computations: those that result from the low-pass filtering
of rows and columns. Again, there is an interval2l between
the points to be accessed at levell, but in this case in both
the rows and the columns.
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Figure 4:Points to be accessed for levelsl = 0::2 ( N = 8 ).



3. THE MEMORY SYSTEM

A description of the memory system involves defining a
memory module assignment functionplacing the image points
to be simultaneously accessed in distinct memory modules,
and anaddress assignment function, allocating an address
inside the assigned module. In general, a system with a
number power of two of memory modules, simplifies the
hardware design of the addressing and routing circuits. Now
we will describe the assignment functions we use.

Thememory module assignment functionassigns to the
element at position(i; j) of the image matrix the following
module number:

�(i; j) = [
k�1X

h=0

(ih + jh)]modM (3)

ih andjh being the digits of the M-base representation
of indicesi andj, respectively. Obviously,k = d n

m
e.

We point out the most important properties of the above
distribution:

� This skewing scheme is not periodic, so it is not lin-
eal.

� It can be considered as a multiskewing scheme. For
index valuesi; j < M it applies�0(i; j) = (i0 +
j0)modM = (i + j)modM . The image matrix is
divided into blocks of sizeM � M . The skewing
scheme for the block at position(�; �) is defined as
��;�(i; j) = [�0(i0; j0) + �+ �]modM , where� =
ik�1+ ik�2+ :::+ i1 and� = jk�1+ jk�2+ :::+ j1.
Local skewing are linear and periodic schemes.

� The distribution permits simultaneous access to M el-
ements belonging to the same row or column of the
image I(*,*) with any interval power of two, as long
as the initial position(i; j) will be a valid one.

In other words, the horizontal (VH) and vertical (VV)
accessing vectors allowed are:

V H2l(i; j) = fI(i; j + 2lb)j0 � b < Mg (4)

0 � i < N;0 � j < N � 2l(M � 1); l � 0

V V
2l
(i; j) = fI(i+ 2la; j)j0 � a < Mg

0 � j < N; 0 � i < N � 2l(M � 1); l � 0

where2l is the stride to apply and auxiliary variablesa
andb are used for sweeping the accesses vector. The initial
position(i; j) must verify the following:

HV2l :
j

2l
modM = 0 (5)

V V2l :
i
2l
modM = 0

1 2 30 1 2 3 0 2 3 0 1 13 0 2

1 2 3 0 2 3 0 1 13 0 2 1 2 30

2 3 0 1 13 0 2 1 2 30 1 2 3 0

13 0 2 1 2 30 1 2 3 0 2 3 0 1

2 3 0 1

1 2 3 0 2 3 0 1 13 0 2 1 2 30

13 0 2 1 2 30 1 2 3 0

13 0 2 1 2 30 1 2 3 0 2 3 0 1

1 2 30 1 2 3 0 2 3 0 1 13 0 2

2 3 0 1 13 0 2 1 2 30 1 2 3 0

13 0 2 1 2 30 1 2 3 0 2 3 0 1

1 2 30 1 2 3 0 2 3 0 1 13 0 2

1 2 3 0 2 3 0 1 13 0 2 1 2 30

13 0 2 1 2 30 1 2 3 0 2 3 0 1

1 2 30 1 2 3 0 2 3 0 1 13 0 2

1 2 3 0 2 3 0 1 13 0 2 1 2 30

2 3 0 1 13 0 2 1 2 30 1 2 3 0

i
j

0 1 2 3 4 
0
1
2
3
4
5
6

5 6 . . .

. . .
Figure 5:Distribution matrix forN = 16 andM = 4

The address assignment functionis the usual for inter-
leaved memory systems:

�(i; j) = bs=Mc (6)

Equations (3)(6) guarantee that elements mapped into
the same memory module will be assigned different ad-
dresses. Besides, it is assured that there won’t be holes of
unused memory space in the memory system. No demon-
stration of the above assertions is given for simplicity.

An example of the proposed skewing scheme is shown
in figure 5, where the matrix dimension isN = 16, and
the number of memory modules isM = 4. Observe the
recursive data distribution.

Let’s see that, as an example, we can access to elements
in a column, with initial position(0; 3) and stride equal to
2. The accessed elements would be[I(0; 3)I(2; 3)I(4; 3)
I(6; 3)] assigned to memory modules 3, 1, 0 y 2, respec-
tively. Since the initial position verifies (5), it is a permitted
one and the memory access is conflict-free.

4. DWT COMPUTATION USING THE PROPOSED
MEMORY SYSTEM IN A SIMD ARRAY

In this section we sketch the computation of a two dimen-
sional DWT using the proposed memory system in a stan-
dard SIMD array, with the following basic architecture:P
independent processing elements (PEs), mastered by a cen-
tral control unit, and connected to M independent memory
modules by an interconnecting network. Besides, we will
supposeM = P in the following paragraphs.

Figure 6 depicts a part of the accesses diagram involved
in the two first levels of DWT computation, for the case
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C1     C2     C3      C4
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PE0

PE2

PE0

PE1

PE2

PE3

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

. . .

. . .

(2,8)PE1

(6,14)PE3

. . .

. . .
(0,0) (0,2) (0,4) (0,6) (0,8) (0,10)(0,12)(0,14)

(2,0) (2,2) (2,4) (2,6) (2,10)

(4,12)

(2,12)(2,14)

(4,0) (4,2) (4,4) (4,6) (4,8) (4,10) (4,14)

(6,6)(6,0) (6,2) (6,4) (6,8) (6,10)(6,12)

l=1

l=2

for y(i,1),z(i,1)

for y(i,0),z(i,0)

for y(i,0),z(i,0)

for y(i,1),z(i,1)

for y(i,2),z(i,2)

for y(i,2),z(i,2)

Figure 6:Some accesses for row processing when building levels
1 and 2 (M = 4 andN = 16)

M = 4. Only the filtering by rows is shown, as the one
by columns can be obtained just by transposing the indices.
A row is assigned to each PE that sweeps it, so that pre-
viously read values can be reused. Each PE applies coef-
ficientsCi (representing sequences h(n) and g(n), for the
low and high pass filtering respectively ), to the four read
values ofI(�; �). For example, PE0 atl = 1 reads points
[I(0; 0)I(0; 1)I(0; 2)I(0; 3)], and computes y(0,0) and z(0,0),
that are stored in positionsI(0; 0) andI(0; 1) of the array,
respectively. Usually, no idle-processors will appear as it
will be N >> M and not all levels are computed.

As observed before, we can see in figure 4 how the ’in-
place’ computing of the DWT involves power of two strides
both in the rows as in the columns: the distance between
points to be accessed is multiplied by two with each new
level computed. Computing ’in-place’ will result in a differ-
ent data distribution than in figure 3. However the elements
belonging toeach of the octaves can be easily localized.

5. CONCLUSIONS

SIMD engines are used for accelerating computation of many
image processing algorithms. This can be achieved through
the use of specific memory systems (or skewing schemes)
permitting parallelaccess at each computation stage.

In this paper we propose a memory system that allows
simultaneous access to elements in a row or a column, with
whatever stride equal to a power of two. The hardware
needed to implement the memory module and address func-
tions is very simple because the number of memory mod-
ules is a power of two and the simplicity of our skewing
scheme. The efficiency of our design is proved through the
computation of the 2D-DWT.

The design is well suited for computing algorithms with
a dyadic subband binary tree structure, as the DWT, and
other two dimensional orthogonal transforms of great inter-
est. Some of this transforms can be computed using a mem-
ory system just allowing parallel access to rows or columns
with only stride 1 [4], or enabling the access by rows with
any interval power of two as [2]. We have verified that our
system reaches similar performance than [2] for Gaussian
Pyramid, though using less memory modules and without
producing holes that would waste the memory space avail-
able.

We must point out that the interconnection network shouldn’t
be a complex one (i.e. crossbar). Our actual work in this di-
rection concludes that it may just consist of a rotation stage,
and a stride-dependent number of perfect-shuffle ones.
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