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ABSTRACT

The performance of the Constant Modulus Algorithm
can su�er because of the existence of local minimawith
large Mean Squared Error(MSE). This paper presents
a new way of obtaining the optimumMSE over all de-
lays using a second equalizer under a mixed Constant
Modulus and Cross Correlation Algorithm (CM-CCA).
Proof of convergence is obtained for the noiseless case.
Simulations demonstrate the potential of the method.

1. INTRODUCTION

The Constant Modulus Algorithm(CMA) [4, 9] has
proved to be very successful for blind equalization. How-
ever, the performance of the CMA can su�er because
of the existence of local minima with correspondingly
large Mean Squared Error(MSE)[3]. It has been shown
that for a Fractionally Spaced Equalizer (FSE) that
satis�es the zeros and length constraints, CMA is guar-
anteed to reach an open-eye solution [2]. When noise
is added, this is no longer the case, and the CMA may
�nd a solution which has high MSE[8].

This leads to a desire to �nd appropriate ways
to initialise the algorithm. Centre-spike initialisation
does not guarantee convergence to a good solution[8]
. More recently, the same authors suggest Channel
Sur�ng Reinitialisation(CSR) as a way of �nding good
solutions. This paper describes a new method of reini-
tialisation which is computationally e�cient.

The method relies on recent work in [6, 7] which
demonstrates simultaneous blind multiple source re-
construction, and relies on a cross correlation addi-
tion to the standard CMA cost function to form the
mixed Constant Modulus and Cross Correlation Algo-
rithm (CM-CCA).
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2. THE MODEL

The problem is that of equalizing an FIR channel with
zero mean Additive White Gaussian Noise (AWGN)
using an FIR equalizer. The signals are oversampled at
L times the baud rate. The input symbols (s(k)) are
assumed to be Independent and Identically Distributed
(IID) and where k is the discrete time index. Each
of the L sub-channels (hl(k)) is of order M and has
M + 1 taps, and each sub-equalizer (wl(k)) is of order
N , giving (N+1)L taps for w(k). De�ning the channel
matrix H as

2
666666666666666664

h1(0) : : : h1(M ) 0 : : : 0
...

...
...

...
. . .

...
hL(0) : : : hL(M ) 0 : : : 0
0 h1(0) : : : h1(M ) : : : 0
...

...
...

...
...

...
0 hL(0) : : : hL(M ) : : : 0
...

...
...

...
...

...
0 : : : 0 h1(0) : : : h1(M )
...

. . .
...

...
...

...
0 : : : 0 hL(0) : : : hL(M )

3
777777777777777775

and the symbol vector s(k) = [s(k); :::; s(k� N �M )]t,

the input to the equalizer can be expressed as x(k) =

Hs(k) +u(k), where u(k) is the noise vector, indepen-

dent of s(k), x(k) = [x(k); :::; x(k� L(N + 1) + 1)]t.

De�ning all the equalizer tap weights in one vector

as w(k) =
�
w0; w1; :::; wL(N+1)�1

�t
, the output of the

equalizer becomes y(k) = wH
x(k), where (:)H denotes

Hermitian transpose.

3. MIXED CM-CC ALGORITHM

The standard CMA cost function is given by J1 =

E

��
 � jy(k)j2

�2�
, where  =

E[js(k)j4]
E[js(k)j2]

= �2sks



and ks =
E[js(k)j4]
E[js(k)j2]

2 is the kurtosis of s(k). Using

this criterion, and a sensible initialisation scheme,
and in some cases certain [2], that the equalizer
will converge to an open eye solution and hence
y(k) � s(k � d)ej� , where � is an arbitrary but
constant phase term. However, this does not guar-
antee a low MSE and some values of d may pro-
duce large MSE. The idea behind this new method
is to use a second equalizer with a di�erent cost
function to search for the value of d which gives
the minimum MSE.

The cost function of the second equalizer is

speci�ed as J2 = E

��
 � jy2(k)j
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�
1(k � �)]j2, where

� 2 <+ and d2 2 �(M +N); :::� 1; 1; :::;M +N .
We can assume with high probability that the �rst
equalizer has achieved convergence to an open-eye
solution, by simply using CMA. Then the output
y1(k) � s(k � d1)ej�1 . Since � = d2 is excluded
from the cross-correlation, the second cost func-
tion is then minimised when y2(k) = s(k � d2 �

d1)e
j�2 . By selecting values of d2 6= 0, we can

obtain di�erent symbol delays, that is y2(k) 6=
y1(k) = s(k � d1)e

j�1 . For fractionally spaced
channels satisfying the zeros and length criterion,
with no noise, the cost function has only minima
corresponding to s(k�d2�d1)e

j�2 if 0 < d1+d2 <
M +N , provided � > 2�2sks. If the constraint on
d1 + d2 is not satis�ed, then for � > 2�2sks, there
is only one minimum which is at the origin.

The standard CMA cost function can be ex-
pressed as a generalised version of that in [5]
J1 = ks�
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s , where g is the baud rate impulse response

of the whole channel plus the equalizer of length
p+ 1 = M +N + 1and (:)� denotes complex con-
jugate. We can also write J2 = ks�
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. Provided that

the channel matrix, H, has full rank then rgJ2 =
0$ rwJ2 = 0, so working with the gradient with
respect to the channel and equalizer convolution is

equivalent to using the gradient with respect to the
equalizer alone.

If we de�ne the complex gradient operator as

rg =
1
2

h
�

�<fg0g
+ j�

�=fg0g
; � � � ; �

�<fgpg
+ j�

�=fgpg

it
, the

gradient of J2 becomes rg (J2) = 2�g + 2�g�

where � = diag[�0+��
2
s=2 : : :�d1+d2 : : :�p+��

2
s=2],

�l = �4s

�
jglj

2 (ks � 2) + 2 jjgjj22 � ks
�
and

� = diag[�0 : : :�p], �l =
��E �
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De�ning the Hessian as rgr
H
g (J2) = 	, we have

diagonal terms 	l;l = 2�4s

h
jglj

2 ks + 2 jjgjj22 � ks
i

+ f
��2s l 6= d1 + d2
0 l = d1 + d2

g and o� diagonal terms, of

the lth row and mth column, 	l;m = 8�4sglg
�
m

There are �ve ways in which the gradient can
become zero.

(i) g = 0 where 0 is the zero vector. The
Hessian then becomes �2sdiag[(�2�

2
sks + �) : : :�

2�2sks : : : (�2�
2
sks+�)], which is negative de�nite if

� < 2�2sks indicating a maximum at the origin and
inde�nite when � > 2�2sks, because of the single
negative value on the diagonal indicating a saddle
point at the origin. Note that if we do not satisfy
the constraints on d2 and so 0 < d1+d2 or d1+d2 >
M + N the single negative value in the diagonal
disappears giving a positive de�nite Hessian and
a minimum at the origin for � > 2�2sks.

(ii) One gi 6= 0; i 6= d1+d2 and all other gi = 0

This corresponds to the selection of a particu-
lar delayed symbol s(k � i). Setting the gradient
equal to zero gives jgij

2 = 1 � �
2�2

sks
, which gives

a Hessain of 2�2sdiag[(2�
2
s � �=ks) : : :(2�

2
s � �(2+

ks)=2ks) : : :(2�
2
s ��=ks)]. For � < 4�2sks=(2+ks),

we have a positive de�nite Hessian, giving a mini-
mum and meaning that the solution s(k� i) is an
achievable delay and undesirable minimum. When
4�2sks=(2+ ks) < � < 2�2sks, the Hessian is inde�-
nite and is a saddle point. For values of � > 2�2sks,
the value of jgij

2 is negative and hence there is no
stationary point.

(iii) gd1+d2 6= 0 and all other gi = 0

Setting the gradient to zero yields jgd1+d2 j
2 =

1, hence the output becomes s(k� d1 � d2) as de-
sired. The Hessian becomes
�2sdiag[(4�

2
s+�) : : :4�2s : : : (4�

2
s+�)] which is pos-

itive de�nite for � > �4�2s . This corresponds to



the global minimum.

(iv) v > 1 number of gi 6= 0; i 6= d1 + d2 and
all other gi = 0

Here, we restrict the analysis to QAM constel-
lations, which means

��E �
s(k)2

���2 = 0. General
constellation analysis can be found in [1].

When the gradient is zero, this gives jgij
2 =

�2
s
ks�4�2sjjgjj

2

2
��

2�2s(ks�2)
. The right hand side of this equa-

tion holds for all non-zeros jgij
2, so all terms have

the same modulus giving jjgjj22 = v jgij
2. This gives

jgij
2 =

�2sks�4�
2
sjjgjj22��

2�2s(ks+2(v�1))
. Since v > 1, there are no

solutions to this equation when � > 2�2sks because
the left hand side is negative.

(v) v > 0 number of gi 6= 0, plus gd1+d2 6= 0
and all other gi = 0

We also restrict the analysis to QAM in this
section. Zeroing the gradient and proceeding as in

(iv) yields jgij
2 = ks(2�2s(ks�2)��)

2�2
s
(ks�2)(ks+2v)

and jgd1+d2j
2 =

2�2s(ks�2)+2v�
2�2

s
(ks�2)(ks+2v)

. If ks � 2 > 0, jgij
2 < 0 when

� > 2�2s(ks � 2). If ks � 2 < 0, jgd1+d2j
2 < 0 when

� > 2�2s(2� ks). In both cases � > 2�2sks ensures
that there are no stationary points on the error
surface.

Even if there is noise or we do not satisfy the
above constraints, provided the �rst equalizer con-
verges to an open eye solution, simulations suggest
that the second equalizer will still converge to the
solution with the desired delay.

Once the second equalizer has converged for
a given d2, the second part of the cost function
must be switched to zero (� = 0) to facilitate a
fair comparison of the MSE of the two equalizers.
If an improvement is found then the taps in the
�rst equalizer can be substituted with those of the
second. Then the process can be repeated for a dif-
ferent delay d2 until all possiblities are exhausted.
This process will then �nd the lowest MSE over all
delays. It is possible to use as many extra equaliz-
ers as are desired to speed up the search process.
For instance, the use of one equalizer to search
positive d2 and another to search negative d2 may
be desirable, but this increases the complexity.

There are several advantages over the CSR
scheme. Firstly, no estimate of the autocorrela-
tion of the equalizer input is needed, and no ma-

trix inversions are required with the mixed CM-
CCA scheme, both of which are required for CSR.
The CSR scheme approximates the channel matrix
for di�erent delay shifts and for large shifts, this
approximation can lead to starting points which
are remote from the desired minimum. Starting
from one particular minimum, all the other min-
ima are exactly obtainable using the mixed CM-
CCA scheme.

4. ADAPTIVE SCHEME EQUATIONS

By making the usual assumptions about indepen-
dence of tap weights and symbols and taking the
instantaneous values instead of expectation oper-
ators, the instantaneous estimate of the gradient
of the cost function becomes r̂w2

(J2) =�
4y2(k)( � jy2(k)j

2)2 + 2�b(k)
�
x(k), where b(k)

=
P�=M+N

�=�(M+N);� 6=d2
E [y2(k)y

�
1(k � �)] y�1(k� �).

Since the taps of both equalizers are evolving, it
is necessary to use a windowed estimate of the ex-
pected cross-correlation. The expectation of
y2(k)y�1(k � �) was therefore replaced by a sam-
ple estimator p̂(k), where p̂(k+ 1) = �p̂(k) + (1�
�)y2(k)y�1(k� �). Similar windowed measures can
be used to compare the MSE of the two equalizers.
The method for selecting d2 in these simulations
was to initialise d2 = 1 and then to increase the
magnitude of d2 trying �rst positive then nega-
tive delays to �nd a better MSE. The value of d2
was reset to unity magnitude on �nding a better
MMSE.

5. SIMULATION RESULTS

The �rst example is the same example as given in [8].
The channel is a symbol spaced AR(n) channel of the
form H(z) = 1

1+�z�n . In this instance, � = 0:5 and
n = 1. A two tap symbol rate equalizer was used with
BPSK symbols (�1) and SNR = 20dB. The cost func-
tion for CMA is shown in Figure 1. This shows four
minima, two of which correspond to �s(k � 1) and
two to �s(k). When initialised using a centre spike to
w1 = [0; 1], the equalizer converges to the solution for
s(k � 1) with MSE of 0:2620. The cost function for
the second equalizer, with the �rst equalizer taps as-
sumed to be �xed, is shown for � = 2 in Figure 2. This
Figure shows that only two minima are now present.
With the �rst equalizer at one of the local minima,
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Figure 1: CMA for AR(1) channel
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Figure 2: CM-CCA for AR(1) channel � = 2

the second equalizer converged the global minima with
MSE of 0:0205. Using a channel similar to the two
ray model used in [8], the CM-CCA was tested in a
fractionally spaced case. The impulse response was
given by h(t) = (0:1143 + 0:7740i)r(t) + (�0:4307 �
1:7330i)r(t � 3:3333T ), where T is the symbol period
and r(t) is the raised cosine function with roll-o� 0.25
truncated to 6T . Using 8PSK and SNR = 15dB, an 18
tap fractionally spaced equalizer was adapted using the
mixed CM-CCA. After initialising the �rst equalizer by
setting each tap to 1, while the rest remained at zero
in di�erent iterations, the �nal MSE was noted in each
case. In all cases, the MSE was less than 0:0280, which
is a very low value given the noise. All solutions even-
tually reached the optimum MSE over all delays. The
speed at which this was achieved for di�erent starting
conditions depended on the way in which d2 located
the optimum delay from the starting point given by
the �rst equalizer.

6. CONCLUSIONS

The mixed CM-CCmethod presented in this paper pro-
vides a method of �nding the minimum MSE over all
delays via a search technique using two or more equal-
izers. Provided that the CM algorithm can achieve an
open eye solution to begin with, then the mixed CM-

CC cost function appears to have only global minima.
This is provable in the noiseless, fractionally spaced
case with the usual zeros in common and length con-
straints. The use of the cross-correlation method in the
DFE and in FSE-DFEs may also increase the proba-
bililty of global convergence and is being investigated.
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