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ABSTRACT

This paper proposes a new approach for sources separation
in special nonlinear mixtures, called post nonlinear mix-
tures (PNL). We �rst explain the nice separability prop-
erties of these mixtures: solutions have almost the same
indeterminacies as in instantaneous linear mixtures. The
method proposed in this paper is based on the minimiza-
tion of the mutual information, which needs the knowledge
of source distributions or more exactly of log-derivative of
source distributions (the so-called score functions). The
algorithm consists of three adaptive blocks: one nonlinear
block is devoted to adaptive estimation of source score func-
tions, and drives the adaptation of the two other blocks esti-
mating the linear and nonlinear parts of the mixtures. The
paper �nishes with experimental results which illustrate the
e�ciency of the algorithm.

1. INTRODUCTION

The problem of source separation has been intensively stud-
ied during the last ten years, mainly in the case of linear
instantaneous mixtures, and more recently for linear convo-
lutive mixtures. Conversely, source separation in nonlinear
mixtures has been very sparsely adressed. This can be eas-
ily explained by the following remark. Let u and v be two
independent random variables, then f(u) and g(v), where
f and g are any nonlinear functions, are also statistically
independent. It means that, using the source independence
assumption, it will be not possible to estimate the original
sources, but only some unknown nonlinear function of the
sources. Such distortions on estimated sources are discour-
aging for addressing this problem.

Anyway, a few authors, despite the di�culty, explored
the problem of source separation in nonlinear mixtures. Pa-
junen et al. [7] used Kohonen's maps to interpolate the solu-
tions. Deco [6] studied the very particular (and restricting)
case of volume-conserving nonlinear transforms. More re-
cently, Yang et al. [12] proposed an algorithm for mixtures
with inter-channel nonlinearities.

In this paper, we addressed source separation in partic-
ular nonlinear mixtures, the so-called post nonlinear mix-
tures (PNL). We recall in section 2 the nice separability
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Figure 1: General separation scheme

properties of these mixtures [10]. In section 3, we pro-
posed a new separation algorithm based on a quasi-optimal
entropy minimization involving estimation of source score
functions. In section 4, experimental results prove the e�-
cacy of the algorithm.

2. POST NONLINEAR MIXTURES (PNL)

Consider the special nonlinear mixtures of n sources sj(t)
observed by n sensors:

xi(t) =
Pn

i=1
aijsj(t);

ei(t) = fi(xi(t)); i = 1; : : : ; n;
(1)

where fi are unknown inversible nonlinear functions, aij are
the unknown real entries of an instantaneous mixing ma-
trix A, and sj(t) are unknown non Gaussian independent
sources. In the following, the mixtures ei(t) (Fig. 1) will be
called post nonlinear mixtures (PNL). Although particular,
this model is realistic enough: it corresponds to systems in
which the channel transmission is modeled by instantaneous
linear mixtures, while sensors with theirs preampli�ers in-
troduce nonlinear mappings.

Assuming PNL mixtures, the separation architecture is
a 2-stage structure (Fig. 1): the �rst stage is a set of n non-
linear blocks suited for inverting the nonlinear mappings fi
, and the second stage is a separating matrix B suited for in-
stantaneous linear mixtures. Each nonlinear block provides
a parametric estimation gi(�i; x), where �i is a parameter
vector. The aim of this function is to cancel the nonlinear



distortion fi, which should be achieved if gi(�i; fi(x)) / x.
PNL mixtures have a very interesting property (according
to general nonlinear mixtures), summarized in the following
lemma [10]:

Lemma 1 Let be n PNL mixtures of n sources. If the sig-

nals xi(t) are statistically dependent, then the outputs yi(t)
of the separating structure are pairwise independent if and

only if yi(t) = �is�(i)(t) + �i, where �i and �i are real

constants and �(i) is a permutation on f1; : : : ; ng.

If there is at most one Gaussian source, the indepen-
dence of xi's corresponds to a condition on the mixing ma-
trix A. In fact, the source separation without distortion
can be achieved if and only if the mixing matrix has at
most 2 nonzero entries per row or per column. Then, under
this simple condition generally satis�ed, the above lemma
claims that, in PNL mixtures, source separation is possi-
ble with the same (scale and permutation) indeterminacies
as in instantaneous linear mixtures, plus a translation, but
without nonlinear distortions.

2.1. Source estimation

The separating structure is tuned so that outputs (esti-
mated sources) yi(t), i = 1; : : : ; n, become statistically in-
dependent, that is if

Q
i
pYi(yi) = pY (y). As many re-

searchers have already proposed [5],[11]..., the statistical
independence can be measured using the Kullback-Leibler
(KL) divergence between the product of marginal densitiesQ

i
pYi(yi) and the joint density pY (y). Independence is

achieved if and only if the KL divergence is equal to zero,
or which is equivalent, if the mutual information is I(y)
minimal :

I(y) =

nX
i=1

H(yi)�H(y) (2)

The minimization of (2) is di�cult because the entropies
H(yi) (i = 1; : : : ; n) explicitely require to know the densi-
ties pYi . To overcome this problem, it is possible to approx-
imate the densities with Gram-Charlier (GC) expansion. In
[10], we explored this idea and approximated the unknown
source densities by a 4-th order Gram-Charlier expansion.
It leads to a 2-term criterion: the �rst term is the Comon's
contrast function [5] for linear instantaneous mixtures (sum
of 4-order squared cumulants), the second term is directly
related to the nonlinear part of the mixture. With soft
nonlinear mixtures, this method leads to satisfying experi-
mental results. Conversely, with hard nonlinearities, results
are disappointing. This is a direct e�ect of the truncation
done in the GC expansion.

In the following, to avoid drawback of GC based al-
gorithm, we developp a new algorithm based on a direct
minimization of I(y).

Considering the separating structure: y = B[g(e)], the
mutual information (2) is:

I(y) =

nX
i=1

H(yi)�H(e)

�

nX
i=1

E[ln j g0i(�i; ei) j]

� ln j det(B) j (3)

2.2. Estimation of the linear part of the separating
structure

Deriving the criterion (3) with respect to the separation
matrix B directly leads to the algorithm:

B(t + 1) = B(t) + �tK(y)B�T (t) (4)

where �t is the stepsize, and K(y) is a square n�n ma-
trix. This matrix depends on components yi, i = 1; : : : ; n
of output vector y:

kij(y) =

�
0 if i = j

 Yi(yi)yi if i 6= j
(5)

where the functions  Yi (u) =
d
du

ln pYi (u), the so-called
score functions, are unknown. Introducing the concept of
relative gradient [3] or natural gradient [1], a few authors
suggested to multiply the gradient by BB�T which leads
to the equivariant 1 algorithm:

B(t+ 1) = (I + �tK(y))B(t) (6)

Anyway, optimal implementation of (6) also requires to
know the score functions  Yi(yi) or the densities pYi .

2.3. Estimation of the nonlinear part of the sepa-
rating structure

Deriving now the criterion (3) with respect to the parame-
ters �i of the nonlinear blocks directly leads to the gradient
algorithm:

�i(t+ 1) = �i(t) + �t�i(t) (7)

where the adaptive increment writes :

�i(t) = r�i ln j g
0

i(�i; ei) j +r�igi(�i; ei)

nX
j=1

 Yj (yj)bji

(8)
This algorithm can be improved using a second-order opti-
mization method. Such a method consists in replacing the
scalar stepsize �t by a matrix stepsize Gi, generally equal to
the inverse of the Hessian. Then the algorithm (7) becomes
:

�i(t+ 1) = �i(t) +Gi�i(t) (9)

To avoid the computation cost of the inverse of the Hessian,
usual approximations can be used. It can be proved that
the natural gradient corresponds to the matrix :

Gi = �tE
�
r�i ln j g

0

i(�i; ei) j r
T
�i
ln j g0i(�i; ei) j

�
�1

(10)

The two algorithms (6) and (9) do not take into account
the solution indeterminacies (see Lemma 1 in Section 2).
To avoid this problem, a simple and e�cient method con-
sists in using penalty terms so that the outputs of nonlinear
and linear blocks are zero mean with unit variances. For in-
stance, concerning the linear part, we propose to enforce the
diagonal terms kii(y) of the matrix K(y) (equal to zero in
(5)) to :

kii(y) = 1� y
2
i : (11)

1it means that the performance does not depend on the mix-
ing matrix A
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Figure 2: Estimation of score functions : Gaussian (left),
Uniform (right), ({) theoric, (- -) estimated

2.4. Estimation of score functions

Considering algorithms (6) and (9) derived from the crite-
rion (3), it appears that the score functions are the quanti-
ties of interest. They contain all the necessary information
on source distributions for minimizing the criterion but, like
the sources densities, they are unfortunately unknown. The
interest of score functions has been already pointed out by
a few authors: Pham et al. [8] proved that maximum like-
lihood estimation of sources can be performed by zeroing
E[yi Yj (yj)] for i 6= j ; Cardoso and Laheld [3] proved that
the equivariant algorithm EASI achieves the best perfor-
mance when using nonlinear functions proportional to the
sources score functions. This result can also be generalized
for convolutive mixtures [4]. In [4] and [8], authors per-
form a linear parametric estimation by projecting the score
functions on a subspace spanned by 3 nonlinear functions
(which must be carefully chosen).

To avoid the choise of these nonlinear functions, which
seems tricky in the case of nonlinear mixtures, we propose
to estimate directly the score functions, using a "universal"
nonlinear model. We chose to use n multilayer perceptrons
(MLP), one for estimating each score function  Yi (Fig. 1).
Each network provides an estimation hi(wi; u), parameters
wi of which are tuned in order to minimize the mean square
error:

Ei(wi) = E[(hi(wi; u)�  Yi(u))
2]: (12)

Deriving (12) with respect to the parameters wi yields:

rwiEi(wi) = 2E[hi(wi; u)rwihi(wi; u)

+rwi

@hi(wi;u)
@u

]:
(13)

Surprinsingly2 , this last equation no longer depends on the
target function  Yi . This property, due to properties of  Yi ,
points out that the mean square error estimation of score
functions leads to an unsupervised learning of the MLP,
although the criterion (12) is clearly supervised.

With simple networks (MLP with one hidden layer con-
taining 5 to 6 neurons), this method provides very good
results even for hard nonlinear score functions, as shown in
Fig. 2. Moreover, we would like to emphasize on the gener-
alization of this approach : it can be used in any algorithm
driven by entropy minimization (or maximization). In fact,
these algorithms require to know the score functions, or
more generally the gradient of ln pY in the multivariate

2In fact, it is not so surprising, because density estimation is
achieved by histograms or kernel estimation which are basically

unsupervised methods, and score functions are nothing but the
log-derivative of the densities.

case. In [9], this method is applied in linear source separa-
tion and obtains performance clearly better (the crosstalk
is less than -60dB) than others. The method can also be
used for complex data (usual in narrowband telecommu-
nications): in [2], we show that the performance obtained
with this algorithm is clearly better than those obtained
with the EASI algorithm. Especially, the algorithm EASI
requires a condition on the source kurtosis to be stable.
This condition is cancelled by using our approach.

3. COMPUTER EXPERIMENTS

In this section we illustrate the e�ciency of the proposed
approach by a computer simulation. The sources are a si-
nusoid and a uniform white noise (Fig. 3). The mixing
matrix (randomly chosen) is :

A =

�
-2.29 0.49

1.84 0.41

�

The mixtures e(t) (Fig. 3, bottom) are obtained by apply-
ing a di�erent and unknown nonlinear distortion on each
channel (linear mixture), in this example the two nonlinear
distorsions were :

f1(u) =
1
10 (x+ x3)

f2(u) = 3
10x+ tanh 3x

(14)

The joint distribution of the mixtures (Fig. 4, left) indi-
cates the existence of a nonlinear dependence (with linear
mixtures, joint distribution is contained in a simple paral-
lelogram when the distributions have bounded supports).

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 10 20 30 40 50 60
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3: Waveforms : Sources (top), PNL mixtures (bot-
tom)

After convergence of the algorithm, joint distribution
of the nonlinear block outputs (after compensation by gi)
shows that the e�ect of the distortions has been succesfully
cancelled (Fig. 4, right). The linear stage performs then
a linear source separation on this mixture. The estimated
sources are shown in Fig. 6. Their joint distribution (Fig.
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Figure 4: Distributions : PNL mixtures (left), Output of
nonlinear functions gi (right)
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Figure 5: Distribution of estimated sources (left), Residual
Crosstalk decrease (right)

5, left) indicates that the independence has been reached.
Figure 5 (left), shows the decrease of the residual crosstalk
during the run of the algorithm. The residual crosstalk is
mesured by :

Ci = 10 log10 E[(ŷi � ŝi)
2] (15)

where û = u
�u

is a normalized version of u.

4. CONCLUSION

In this paper, we presented an algorithm for the separation
of PNL mixtures. Theses mixtures are realistic and corre-
spond to a lot of real world applications. Moreover, they
enjoy nice separability properties without distortions. The
method of separation is based on mutual information, exact
minimization of which needs the knowledge of the estimated
sources score functions. These functions are estimated us-
ing an unsupervised algorithm, and allows to estimate with
very high accuracy the parameters of the nonlinear separa-
tion architecture.
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Figure 6: Waveforms of the estimated sources
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