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ABSTRACT

In this paper we introduce a neural network implementation
of fuzzy mathematical morphology operators and apply it to
image denoising. Using a supervised training method and
differentiable equivalent representations for the fuzzy mor-
phological operators, we derive efficient adaptation algo-
rithms to optimize the structuring elements. We can then de-
sign fuzzy morphological filters for processing multi-level
or binary images. The convergence behavior of basic struc-
turing elements for the opening filter and different signals,
and its significance for other structuring elements of dif-
ferent shape is discussed. To illustrate the performance of
the fuzzy opening filter we consider the removal of impulse
noise in multi-level and binary images.

1. INTRODUCTION

Despite increasing interest in the application of mathemat-
ical morphology to image processing [1], the selection of
appropriate structuring elements remains a difficult prob-
lem. The shape and size of structuring elements determine
the geometrical features in an image that are preserved or
removed, thus the importance of their selection. Although
advances in optimization of structuring elements [3, 4, 5]
have been achieved, problems are still encountered in the
lack of differentiability of morphological operators, and the
difficulty in analyzing convergence.

In this paper we consider fuzzy morphology [2], which
relates the subsethood of fuzzy rather than conventional sets
and as such fuzzy morphology applies simultaneously to
binary and multi-level images. We extend the concepts in
fuzzy [6, 7] and morphological [8] neural networks to fuzzy
morphological neural networks. To apply such structures
to denoising of images, we establish a training algorithm
that optimizes the structuring elements used in the network.
Our optimization procedure is not constrained as those in
[3, 5] and permit us to analyze the convergence of the op-
timization of basic structuring elements and its general im-
plications for other structuring elements. We show how to
design fuzzy morphological filters that can be applied in the
removal of impulse noise in binary or multi-level images.

2. FUZZY MORPHOLOGICAL NEURAL
NETWORKS

Fuzzy mathematical morphology [2] has been developed us-
ing the notion of “fuzzy fitting” or subsethood of fuzzy sets.
The fuzzy fitting is characterized by an inclusion indicator
I(A;B) 2 [0; 1] given by

I(A;B) = ^x2X [1 ^ (1� �A(x) + �B(x))] (1)

that yields the degree of fitting ofA intoB.
For a signalf(n) and a structuring elementk(n), with

support regionsF andK and corresponding membership
functions�f (n) and�k(n), usingI(A;B), erosion (	), di-
lation (�), opening (�) and closing (�) are defined as fol-
lows:

�f	k(n) = ^m2K;n+m2F [1 ^ (1� �k(m) + �f (n+m))]

�f�k(n) = _m2K;n�m2F [0 _ (�k(m) + �f (n�m)� 1)]

�f�k(n) = �(f	k)�k(n)

�f�k(n) = �(f�k)	k(n)

The implementation of the above fuzzy morphological
operators can be done by modifying fuzzy neural networks
[6, 7]:
Definition 1 A fuzzy morphological neuron has inputsf�f (n);
n 2 Fg, with a structuring elementf�k(m);m 2 Kg as
the synaptic weights, and a single output�g =  (I(k; f));
where (�) is an activation function.

The synaptic weighting and aggregation correspond to
the inclusion indicatorI determining the degree of fitting
between the inputf(n) and the structuring elementk(n).
When considering binary images, the activation function is
the sigmoidal function (a) = 1=(1 + exp(��(a � 1

2 )))
where� > 0. For multi-level images, we let (a) = a.

Fuzzy morphological neurons can thus implement the
different fuzzy morphological operators. In Fig. 1, we dis-
play a fuzzy opening neural network which consists of an
input layer, a hidden layer formed by fuzzy erosion neurons,
and an output layer with a single fuzzy dilation neuron.



3. ADAPTIVE FUZZY MORPHOLOGICAL FILTER
DESIGN

Optimization of the structuring elements used in the net-
work is done using the complement of the equality index
proposed in [6]. For a given input�f (n), corresponding
to f(n), let �g(n) =  (�f3k(n)) be the output of a fuzzy
morphological neural network implementing a morphologi-
cal operator denoted by3. Letting�k(i) = [�k

(i)
(�M1)

� � ��k
(i)
(0)

� � ��k
(i)
(M2)

]T be the structuring element vector at iterationi,
we wish to minimize the inequality index

J(�k(m)) =j �t(n)� �g(n) j (2)

where�t(n) denotes the target or desired function.
Using steep-descent method, the minimization yields the

following training algorithm:

�k
(i+1) = �k

(i) + � sgn(�t(n)� �g(n)) 
0

(�f3k(n))

�
@�f3k(n)

@�k(i)
(3)

where 
0

(a) = (�e��(a�
1
2 ))=((1+e��(a�

1
2 ))2) for binary

images and1 for multi-level images, sgn(�) denotes the sign
function, and� 2 [0; 1] is the training rate.

3.1. Adaptive Fuzzy Erosion and Dilation Filters

To calculate the derivative of the output of a fuzzy erosion
neuron,�g(n) =  (�f	k(n)), we use the alternate rep-
resentation of the minimum function given in [7]. In fact,

letting�e(f(n))(m)
4
= [1 ^ (1� �k

(i)
(m) + �f (n+m))] and

U2[a] =

�
1 if a � 0
0 if a < 0

U3[a] =

8<
:

1 if a > 0
1
2 if a = 0
0 if a < 0

we have that

�f	k(n) = ^m2K�e(f(n))(m)

=
2Ne

Ne

X
m2K

f
Y
~m2K

U3[�e(f(n))( ~m)

� �e(f(n))(m)]g�e(f(n))(m):

It can be shown that

@�f	k(n)

@�k
(i)
(m)

=
@ ^ ~m2K �e(f(n))( ~m)

@�e(f(n))(m)

@�e(f(n))(m)

@�k
(i)
(m)

= �
2Ne

Ne

Y
~m2K

U3[�e(f(n))( ~m)� �e(f(n))(m)]

�U3[�k
(i)
(m) � �f (n+m)];

and noting thatY
~m2K

U3[�e(f(n))( ~m)� �e(f(n))(m)]

=

8<
:

( 12 )
Ne if �e(f(n))( ~m) � �e(f(n))(m);8 ~m

0 otherwise

we then have that

@�f	k(n)

@�k(i)
4
= _e

(i)
f(n) = [ _e

(i)
f(n)(�M1) � � � _e

(i)
f(n)(M2)]

T

where

_e
(i)
f(n)(m) =

8>><
>>:

� 1
Ne
U3[�k

(i)
(m) � �f (n+m)]

if �e(f(n))(m) is selected as min

0 otherwise

(4)

Ne =
P

m2K

Q
~m2K U2[�e(f(n))( ~m)��e(f(n))(m)] is the

number of inputs�e(f(n))(m) equal to the minimum out-
put of the aggregator. Replacing this derivative in (3) the
training for the fuzzy erosion filter is obtained.

Similarly, the derivative for the adaptive fuzzy dilation
filter is given by

@�f�k(n)

@�k(i)
4
= _d

(i)
f(n) = [ _d

(i)
f(n)(�M1) � � � _d

(i)
f(n)(M2)]

T

_d
(i)
f(n)(m) =

8>><
>>:

1
Nd
U3[�k

(i)
(m) + �f (n�m)� 1]

if �d(f(n))(m) is selected as max

0 otherwise

(5)

where�d(f(n))(m)
4
= [0 _ (�k

(i)
(m) + �f (n �m) � 1)] and

Nd =
P

m2K

Q
~m2K U2[�d(f(n))(m)��d(f(n))( ~m)] is the

number of inputs�d(f(n))(m) equal to the maximum output
of the aggregator. Replacing this derivative in (3) the train-
ing for the fuzzy dilation filter is obtained.

3.2. Adaptive Fuzzy Opening (AFO) Filter

Combining the adaptive fuzzy erosion and dilation filters,
we obtain the opening filter. The derivative for this filter is
given by

@�f�k(n)

@�k(i)
= ( _E

(i)
f R+ I) _d

(i)
f	k(n) (6)

where _E(i)
f = [ _e

(i)
f(n�M2)

� � � _e
(i)
f(n) � � � _e

(i)
f(n+M1)

], andR and
I are(M1+M2+1)�(M1+M2+1) reflection and identity
matrix, respectively. Clearly, the derivative for AFO filter
indicates that it consists of multiple derivative erosion vec-
tors with input�f (n), and a derivative dilation vector with
input�f	k(n). Replacing this derivative in (3) the training
for the fuzzy opening filter is obtained.



3.3. Convergence of Structuring Elements

Consider the following basic structuring elements:
Definition 2 A structuring element,�k(m) is said to be a
delta structuring element if�k(m) � 1;8m( 6= 0) 2 K,
�k(0) = 1 and it is such that�f3k(n) = �f (n), for any
fuzzy morphological operation3.
Definition 3 A structuring element,�k(m) is said to be a
flat structuring element if�k(m) = 1;8m 2 K.
For these structuring elements we have the following prop-
erties:
Proposition 1 ( _E(i)

f R+ I) _d
(i)
f	k(n) = 0 for the delta struc-

turing element.
Proposition 2 Let �f (n) correspond to a flat, or a mono-

tonically increasing or decreasing signal. Then( _E
(i)
f R +

I) _d
(i)
f	k(n) = 0 for the flat structuring element.

As expected, proposition 1 indicates the delta structuring el-
ement for opening is optimal for any input signal. Likewise,
the flat structural element according to proposition 2 is op-
timal for flat or increasing or decreasing signals.
Proposition 3Let�(i)

o be the opening update vector at iter-
ationi.
�

(i)
o = ( _E

(i)
f R+ I) _d

(i)
f	k(n)

= [�
(i)
o (�M1) � � ��

(i)
o (0) � � ��

(i)
o (M2)]

T

where�(i)
o (m) =

@�f�k(n)

@�k
(i)

(m)

. Then for an initial flat struc-

turing element we have that
P

m2K �
(0)
o (m) = 0.

This proposition indicates that for an initial flat structuring
element, if there are some positive update terms�

(0)
o (m) >

0 for somem 2 K, then there exist some negative update
terms�(0)

o ( ~m) < 0 for some~m 2 K. Therefore, the shape
of resulting structuring element from the initial flat structur-
ing element lies between the shape of delta and flat structur-
ing elements at next iteration.

4. SIMULATION RESULTS

In this simulation, multilevel images are linearly normalized
into the range[0; 1] to get the membership functions,3� 3
flat structuring element is used for training, and positive im-
pulse is set to1. Also each image is divided into equal size
blocks of pixels, which are then concatenated to create the
input vector. To get locally optimized structuring elements,
the image is partitioned into regions. Each optimal structur-
ing element obtained from the training process is then used
to filter the noisy image. Figure 2 illustrates AFO filtering
for “Circular Zone Plate” (CZP). As shown in Fig. 2, each
optimal structuring element adapts its shape to the region.
Thus the noise component which does not fit the optimal
structuring element is effectively removed, while the detail
signal is well preserved. Figure 3 shows filtering of “Lena”
image corrupted by20% positive impulse noise. The peak-

to-peak SNR values of restored images by two-state filter[9]
and AFO filter are 28.08 and 32.61 dB, respectively. (In [9],
it is indicated that the performance of multistate filter using
supervised training is 1-2 dB better than that of two-state
filter.)

We can develop unsupervised training algorithm based
on propositions 1-3. In this case, the desired signal is the
input (noisy) signal itself. Using 4 directional flat structur-
ing elements with1�3 size, the restored “FINGERPRINT”
image by an unsupervised AFO filter is shown in Fig. 4.

5. CONCLUSIONS

In this paper we introduced the neural network implemem-
tation of fuzzy morphological operators. An algorithm to
optimize the structuring elements was proposed. We then
showed a way to design fuzzy morphological filters for the
removal of noise from binary and multi-level images. We
presented some preliminary results in the convergence be-
havior of the optimization of the structuring elements. This
is an open area of research where more work needs to be
done. The simulation results indicate that the method com-
pares well to existing methods.
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Figure 1: A fuzzy opening neural network

(a) (b)

(c) (d)

Figure 2: Noise removal of corrupted CZP by supervised
AFO filter (4� 4 regions): (a) Desired CZP, (b) Noisy CZP,
(c) Restored CZP, (d) Optimal S.E.

(a) (b)

(c) (d)

Figure 3: Noise removal of corrupted “Lena” image: (a)
Desired image, (b) Noisy image, (c) Restored image using
method in[10], (d) Restored image by supervised AFO filter
(32� 32 regions)

(a) (b)

(c) (d)

Figure 4: Noise removal of corrupted “FINGERPRINT” by
unsupervised AFO filter (16� 16 regions): (a) Original im-
age, (b) Noisy image, (c) Restored image, (d) Optimal S.E.


