
CODEVELOPMENT OF THE TMS320C6X VelociTI
ARCHITECTURE AND COMPILER

Ray Simar Jr.
Texas Instruments Incorporated

P.O. Box 1443, M/S 720
Houston, TX 77251-1443

ABSTRACT
Continuing dramatic improvements in semiconductor
manufacturing processes are enabling radical new signal-
processing architectures at the chip level. The development of
these new architectures must be coupled with clearly defined
target applications, a thorough analysis of applicable signal
processing algorithms, and significant advancements in code-
generation technology. The TMS320C6x development program
involved the codevelopment of the VelociTI architecture, a new
code-generation capability, and a large set of representative
benchmarks.

1. INTRODUCTION

DSPs are designed to achieve high performance on DSP
applications with minimum silicon cost. While this has been
accomplished with previous DSP architectures, it has often come
at the cost of architectural characteristics that overly constrain the
compiler. To overcome this, the VelociTI DSP VLIW
architecture was codeveloped with a new VLIW code-generation
technology, and benchmarked by a set of representative DSP
benchmarks. The first implementation of this architecture is the
TMS320C6201 [1][2], the first general-purpose advanced VLIW
DSP. Compared to a traditional DSP, VelociTI has many
advantages that enable a high-level language compiler to more
fully exploit the parallelism of the machine. This combination of
architecture and compiler can achieve performance at or near
peak for DSP applications.

As will be shown, for typical DSPs the specialization of the
instruction set and the constraints of the pipeline protection
generally prevent high-level language compilers from extracting
optimal performance from the machine. The VelociTI DSP
VLIW architecture was developed to overcome, as much as
practical, many of the compiler limitations of traditional DSPs
[3].

The following section introduces VelociTI and presents the first
member of the VelociTI family, the TMS320C6201. Section 3
discusses the VelociTI pipeline. Section 4 explains the
advantages of VelociTI for a compiler and why this architecture
is a better target for a high-level language compiler than both
traditional DSPs and traditional VLIWs. Section 5 describes
software pipelining, a key compiler technique for scheduling
loops on a VLIW [4] and which is especially well suited for DSP
applications. Finally, Section 6 presents benchmark results that
show performance of the compiler compared to hand-coded
assembly on several DSP benchmarks.

2. VelociTI: ADVANCED VLIW FOR DSP

A typical DSP [5][6][7] instruction can simultaneously do one or
more loads, one or more address arithmetic operations, a
multiply, an add, and a decrement-and-conditional-branch. Each
instruction typically uses between 16 and 32 bits to encode an
opcode, one or two source operands (for memory operands this
includes addressing modes, base registers, and offsets),
immediate operands (constants) and a destination operand. In
these few bits, obviously there is not enough room in the
instruction to explicitly specify the full operation of each unit, so
the instructions are often highly specialized. The operands are
heavily restricted in the form of register constraints or limited
addressing modes. Some operands may be missing altogether, in
which case they are implied by the opcode or by the machine
state (e.g. mode bits). Figure 1(a) illustrates the control structure
of a typical DSP.

A VLIW [8] on the other hand, uses a wider instruction divided
into fixed-length fields; each field fully specifies an operation,
including opcode and operands, for one functional unit. The

MPYADD

LOADADD MPY

Implied
Control

Explicit
Control Unit

DSP Instruction

(a) Typical DSP

Functional Units

MPYADD

LOADMPYADD

VLIW Instruction

(b) Typical

Functional Units

Control Unit

(c) VelociTI VLIW

Functional Units

Crossbar Control Unit

VelociTI Instruction

LOADADD

SHFTMPYADD

LOAD ADD

SHFT MPY ADD

Figure 1: Architecture Comparison

operations are simple, atomic, and completely independent.
Figure 1(b) illustrates a typical VLIW.

The encoding scheme of the VelociTI advanced-VLIW
architecture, illustrated in Figure 1(c), adds flexibility to previous
VLIWs in three significant ways. First, the wide instruction
(called a fetch packet) is evenly divided into fixed 32-bit atomic
advanced-RISC instructions and, rather than being dedicated to a
specific unit, each field contains a self-contained instruction for
any unit. This is made possible by the crossbar control unit
shown in Figure 1(c).

Second, rather than all the instructions in a fetch packet always
executing in parallel, the parallelism within a fetch packet is
programmable from fully serial to fully parallel. By allowing
serial execution within the instruction packet, VelociTI reduces
the code size penalty that has been a major drawback of previous
VLIWs for embedded applications. Figure 2 illustrates the
flexible serial/parallel execution model.

Finally, each advanced-RISC instruction in the VelociTI
instruction packet can be executed based on an independent
condition. The ability to make any instruction conditional
increases performance by reducing pipeline delays associated
with branching and allowing for speculative execution which
increases the effective parallelism. This technique is also known
as predication.

The TMS320C6201 is the first member of the VelociTI family.
Running at an initial clock rate of 200
MHz, the ‘C6201 executes up to 1,600
MIPS (Million Instructions Per
Second). The ‘C6201 CPU has 8
functional units and 32 registers, both
evenly partitioned between two
identical 32-bit data paths. Each
datapath consists of sixteen 32-bit
general-purpose registers and four
functional units. In addition each data
path has a dedicated bus that can load

or store a 32-bit value to or from memory on each cycle. The data
paths have the ability to access values from each other via cross-
path busing. The CPU can fetch a 256-bit instruction packet on
each cycle, which is divided into eight 32-bit advanced-RISC
instructions that can be executed all in parallel, all serially, or in
any combination (Figure 2).

The TMS320C6201 includes 1Mbit of on-chip SRAM memory
split evenly between program cache and data memory. The
program cache can also be configured as a statically mapped
block of program memory. An External Memory Interface
(EMIF) provides for a glueless interface to various synchronous
and asynchronous memory devices. Also on chip are a number
of peripheral devices including a host access port, a phase-lock
loop clock-generator, and multi-channel DMA and multi-channel
serial ports.

3. THE VelociTI PIPELINE

Typical DSPs have a shallow, protected pipeline that overlaps the
execution of multiple instructions. The pipeline achieves single-
cycle throughput by hiding memory latencies. However, the
arithmetic functional units are not typically pipelined, so the
cycle time of the machine is limited to the throughput of the
slowest unit, often the multiplier. Most instructions can operate
from memory, so even instructions that don’t read memory
require otherwise unnecessary memory stages.

Figure 3(a) illustrates the computation of a sample expression
using the pipeline of a typical DSP. The multiply and add are
performed with one MAC instruction. The pipeline length is
fixed, so each stage must be as long as the longest operation
(MPY), and instructions that don’t load from memory (SUB)
have memory stages. NOPs are inserted by the hardware.

Because of the requirement for assembly language
programmability, the pipeline of a typical DSP must be
protected: the hardware manages functional unit latencies and
inserts delay slots where necessary rather than the programmer
having to perform this complex task. Pipeline protection
requires additional control logic, increasing cost, design time,
and even the machine’s cycle time if the control mechanism
becomes part of a critical speed path.

1 2 3 4 5 6 7 8 9 10
MAC mem1,reg1,ACC ADDR LOAD MPY ADD 11 12
SUB reg2,ACC NOP NOP NOP NOP SUB 13 14
ADD mem2,ACC ADDR LOAD NOP ADD

 (a) Typical DSP – 14 cycles

1 2 3 4 5
LOAD mem1,R2 ADDR LOAD

|| LOAD mem2,R4 ADDR LOAD
|| SUB reg2,ACC SUB

NOP 4 NOP 6 7
MPY reg1,R2,R3 MPY
ADD R4,ACC ADD 8
ADD R3,ACC ADD

(b) VelociTI – 8 cycles

Figure 3: Comparison of pipeline schedule for typical DSP and the VelociTI architecture to
compute this expression: (mem1 * reg1) + ACC + mem2 – reg2

MPY || MPY
MPY
ADD
SHIFT
ADD
STORE
BRANCH

ADD ||ADD || LOAD || MPY
SHIFT
MPY || MOVE || BRANCH

Fetch packet with 2
instructions in parallel,
remainder serial
(8 total).

Fetch packet with 4
instructions in parallel,
then 1 serial, then 3
parallel

Figure 2: Flexible Serial or Parallel Execution

The pipeline of VelociTI is deepened to eliminate traditional
bottlenecks. The functional units themselves are pipelined so that
a new operation can be issued, and a new result obtained, from
each unit in each cycle. The effect is that certain operations, such
as loads and multiplies, have more cycles of latency. But these
deeper instructions do not create a bottleneck for simpler
operations by necessitating a longer cycle time.

Figure 3(b) illustrates the computation of the same sample
expression scheduled on the VelociTI pipeline. Although loads
and multiplies take the same amount of time as the typical DSP,
the stages are shorter. The pipeline is variable length, so
instructions that do not read memory complete sooner. The
compiler has complete flexibility over when operations occur in
the pipeline; for example, the two loads can be scheduled
together to shorten the critical path.

4. COMPILING FOR VelociTI

In order to achieve high performance on DSP code written in a
high-level language such as C, a compiler must do three things.
First, it must simplify the program to reduce the number and cost
of the operations required to execute it. Then, it must discover
parallelism from the serial code. These two tasks involve a series
of steps to analyze and transform the source code [9][10].
Finally, it must be able to generate machine code for the target
machine in such a way that maximizes parallelism within the
limited resources of the hardware. The VelociTI compiler
development focused on addressing this code generation
problem.

To illustrate this, first consider the typical problem a compiler
faces in generating code for a traditional DSP with significant
instruction-level parallelism. The code generation task consists of
three major subtasks: selecting instructions, scheduling them, and
allocating registers for program variables and temporaries.

Each of these problems is significantly difficult to solve
automatically. In fact, optimal instruction scheduling and register
allocation have each been shown to be NP-complete. An NP-
complete problem is one whose solution is believed to have
exponential complexity and thus rendering the guarantee of
optimal solutions impractical [11][12]. Fortunately, years of
compiler research have led to practical and effective heuristic
techniques.

Since the problems of instruction selection, scheduling, and
register allocation are always somewhat interdependent, and
since it is impractical to solve them together, a central problem in
compiler design is to decide in what order to perform the steps.
This is known as the phase ordering problem [13]. Another way
to view the issues involved in the phase ordering problems is to
consider the idea of “separation of concerns”. The different
phases have different issues or concerns associated with them
and the more these concerns can be kept separate from other
phases, the better the job the compiler can will do.

Since the instructions of traditional DSPs tend to be complex,
tightly encoded, and functional unit specific, their selection tends
to constrain scheduling and register allocation. With fewer
registers, it’s often impossible to allocate registers once
scheduling is complete. Allocation may even affect instruction

selection if different functional units (and therefore different
instructions) must be chosen to operate on different types of
registers.

The VelociTI architecture helps this problem in two ways. First,
it reduces architecture-imposed interdependencies between
instruction selection, scheduling, and allocation. Second, it
simplifies each step, increasing the likelihood of an optimal
solution.

5. LOOPS AND SOFTWARE PIPELINING

Loop performance is an important factor for any application,
especially in DSP which tends to be dominated by loops. Just a
few examples include functions such as FIR and IIR filters,
correlation, mean-square error calculation, DCTs and FFTs.

To achieve performance on loops with a VLIW architecture, it is
necessary to discover as much fine-grained parallelism as
possible. A common source of parallelism in loops is across the
loop iterations. Software pipelining is a technique to exploit this
parallelism by overlapping the execution of multiple iterations so
that independent operations from different iterations can be
scheduled in parallel [4][14]. This is accomplished by initiating
each iteration before the previous one completes. Software
pipelining is especially well suited to VLIW and DSP because of
the degree of parallelism available and the ability to schedule
functional units independently.

Software pipelining can effectively increase the throughput of a
program in the same way that a hardware pipeline increases the
throughput of a machine. By overlapping execution of the
iterations, the program can generate a new result every cycle
even if the serial execution of a given iteration takes several
cycles. This is the key advantage of VelociTI’s tradeoff: its
deeper pipeline allows shorter cycle times which, because of
software pipelining, increases overall throughput.

Figure 4 illustrates a software pipelined schedule for a loop with
four operations: LOAD1, LOAD2, MPY, ADD. In each cycle, a
new iteration begins with the issue of LOAD1. In cycle 4, a
steady state is reached in which instructions from 4 iterations are
executing in parallel. The steady state instruction packet (or
packets) is called the kernel because it becomes the body of the
loop. This schedule produces a new result every cycle.

Once the loop is ready to be scheduled, the compiler must first
decide to what degree the loop will be overlapped, that is, how
often to initiate each new iteration. This is known as the

Iterations
1 2 3 4 5 6…

1 LOAD1
2 LOAD2 || LOAD1
3 MPY || LOAD2 || LOAD1

4 ADD || MPY || LOAD2 || LOAD1

5 ADD || MPY || LOAD2 || LOAD1
6 ADD || MPY || LOAD2 || …
7 ADD || MPY || …
8 ADD || …

Figure 4: Software Pipelining

Kernel

Initiation Interval, or II. Smaller values of II result in higher
throughput. The minimum possible value of II (MII) is bounded
by resources and dependency [4].

After determining MII, the compiler attempts to find a schedule
for the loop kernel that fits in MII cycles, while adhering to
machine and dependency constraints. The VelociTI compiler
uses a technique called modulo scheduling, so named because an
instruction scheduled at cycle k will execute in parallel with all
instructions scheduled at cycle k modulo II [13][14].

6. BENCHMARKING

For benchmarking the compiler and the VelociTI architecture, we
use a suite of more than fifty DSP kernel benchmarks, including
key algorithms from telecom, datacom, and wireless applications.
Each benchmark consists of the C code for the algorithm, and the
equivalent algorithm implemented in hand-coded assembly
language.

Table 1 presents a sample of the benchmark results. The table
shows the execution time in cycles for both the assembly and C
versions, and the ratio of C to assembly. For this set of
benchmarks, on average, the compiler came within 19% of hand-
coded assembly performance. This means that, on this set of
benchmarks the compiler is, on average, 84% of the efficiency of
an assembly language programmer. For compiled code
performance on real DSP kernels, 84% is considered remarkably
good. Experience with more traditional DSPs suggests that
50%–20% efficiency is typical.

7. CONCLUSIONS

The TMS320C6x development program focused on the
codevelopment of key technologies in DSP architectures and
code generation benchmarked by representative DSP
benchmarks. The resulting high-level language compiler
technology uses advanced compilation techniques like software
pipelining to far surpass the performance of existing DSPs and to
achieve performance that rivals hand-coded assembly.

REFERENCES

[1] Texas Instruments TMS320C62xx CPU and Instruction Set
Reference Guide. www.ti.com/sc/docs/dsps/products/c6x/

[2] Dillon, T. J. Jr. “The VelociTI Architecture of the
TMS320C6x”. ICSPAT, 1997.

[3] Simar, R. “DSP Architectures, algorithms, and Code-
Generation: Fission of Fusion?”. IEEE International Conference
on Innovative Systems in Silicon, pp. 220-227.

[4] Lam, M. “Software Pipelining: An effective scheduling
technique for VLIW machines”. SIGPLAN ’88 Conference on
Programming Language Design and Implementation, June 1988,
pp. 318-328.

[5] Texas Instruments. Various TMS320 DSP User’s Guides.
www.ti.com/sc/docs/dsps/products.htm

[6] Motorola. Various DSP Family Manuals.

[7] Analog Devices. Various ADSP User’s Manuals.

[8] Fisher, J. A. Very Long Instruction Word Architectures. Yale
University, 1983.

[9] Aho, A.V., Sethi, R., and Ullman, J.D. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1986.

[10] Padua, D.A., and Wolfe, M.J. “Advanced compiler
optimizations for supercomputers”. Communications of the
ACM, 29(12), December 1986, pp. 1184-1201.

[11] Coffman, J.R. Computer and Job-Shop Scheduling Theory.
John Wiley, 1976.

[12] Garey, M.R., and Johnson, D.S. Computers and
Intractability: A Guide to the Theory of NP-Completeness. W.H.
Freeman, 1979.

[13] Davis, A. L., Stotzer, E. J., Tatge, R. E., Ward, A. S.
“Approaching Peak Performance with Compiled Code on a
VLIW DSP”, ICSPAT, 1997

[14] Rau, B.R., and Glaeser, C.D. “Some scheduling techniques
and an easily schedulable horizontal architecture for high
performance scientific computing”. Proceedings of the 14th
Annual Workshop on Microprogramming, October 1981, pp.
183-198.

Benchmark
Asm

cycles
C

cycles
Ratio

C / Asm

VSELP autocorrelate matrix 994 991 1.00
Carrier Oscillator 69 65 0.94
MPEG2 Absolute Distance 376 557 1.48
VSELP Dot Product 29 32 1.10
VSELP FIR 226 260 1.15
IIR Cascaded 58 69 1.19
CELP Impulse 1367 1897 1.39
JPEG DCT 245 240 0.98
Fwd Lattice Filter Synth 40 52 1.30
LMS 69 77 1.12
VSELP MAC 49 53 1.08
Max Index 33 42 1.27
VSELP Min Err 1173 1576 1.34
MPEG DCT 247 282 1.14
VSELP Orthoganalization 50 58 1.16
Harmonic Series Oscillator 106 140 1.32
Viterbi V32 Decoder 79 113 1.43
Vector Quantizer MSE 267 269 1.01

Average 1.19

 Table 1: Benchmark Results

