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ABSTRACT

We present a new technique for estimating the general-
ized transfer function (GTF) of a time{varying �lter from
time{frequency representations (TFRs) of its output. We
use the fact that many of these representations can be writ-
ten as blurred versions of the GTF. The approach consists
in minimizing the error between the TFR found from the
data and that found by blurring the GTF. The problem as
such has many solutions. We, therefore, additionally con-
strain it to minimize the distance between the GTF{based
spectrum and the autoterms of the Wigner distribution,
suppressing the cross terms using an appropriate signal de-
pendent mask function. To illustrate the performance of
the proposed procedure we apply it to the spectral repre-
sentation of speech and to signal masking and demonstrate
its superior performance over the existing methods.

1. INTRODUCTION

There is an increasing interest in time{frequency analysis
techniques for the characterization of the time-dependent
spectra of signals found in practical applications [1]. Time{
frequency analysis is related to the theory of linear time-
varying systems (LTV) by extending the spectral represen-
tation of stationary signals to the non{stationary case. Ac-
cording to the Wold-Cramer representation [8, 9], a non-
stationary signal x(n) can be considered the output of a
causal LTV system,

x(n) =

Z �

��

H(n; !)ej!ndZ(!) (1)

whereH(n; !) is the generalized transfer function (GTF) [2]
of the LTV system evaluated on the unit circle and Z(!) is
an orthogonal increments process. The Wold-Cramer evolu-
tionary spectrum SES(n; !) of x(n) is then obtained by con-
sidering the time-dependent variance [8, 9] of x(n), yielding

SES(n; !) = jH(n; !)j2: (2)

Detka et al. [10] have shown that the spectrogram [2]
and Cohen's class of bilinear distributions [4] are related
to the evolutionary spectrum and the generalized transfer
function. In fact, by substituting the expression in (1) into
the general form of the bilinear distributions given by

SBD(n; !) =

1X
k=�1

1X
l=�1

W [l� n; k] �

x
�(l� k; �)x(l+ k; �)e�j(!��)2kd�; (3)

where W [:; :] is a weight function with �nite support, we
�nd that these distributions are related to the generalized
transfer function by

EfSBD(n; !)g =

1X
k=�1

1X
l=�1

W [l� n; k]

Z �

��

H
�(l� k; �)

H(l+ k; �)e�j(!��)2kd� (4)

=

1X
k=�1

Z �

��

SES(k; �)

G(n� k; ! � �;H) d� (5)

where Ef:g is the expected value operator and G(�; �; �) is
a blurring function that depends on W [�; �] and H(�; �). In
this paper, we exploit this relationship to compute improved
estimates of the GTF and the ES using a deconvolution ap-
proach. The deconvolution problem of interest consists in,
given a signal x(n) and a bilinear distribution, we wish to
obtain a H(n;!), such that when blurred according to (4)
it results in the given bilinear distribution.

Pitton et al. [6], who proposed a similar approach using
the spectrogram, circumvent the dependence of the blurring
function on the GTF by assuming that the process under
consideration is stationary within the spectrogram window.
While such an assumption simpli�es the blurring functions,
it can result in an incomplete deblurring. In our method, we
do not assume stationarity and di�er also with the current
deconvolution techniques [5, 6] in the sense that: (a) our
technique can be based on any TFR and (b) we estimate
H(n; !) rather than the TFR. Such a transfer function is
used not only to obtain positive estimates of the deblurred
TFR using (2) but also for signal reconstruction, masking
and �ltering of non{stationary signals, and in the modeling
of time{varying systems.

The rest of the paper is organized as follows. In Section
2, we discuss the estimation of the generalized transfer func-
tion via deconvolution. We show that the deconvolution as
stated above admits many solutions for H(n; !). In Section
3, we present some applications of the new estimate of the
GTF.



2. ESTIMATING THE GENERALIZED

TRANSFER FUNCTION

In this section we present a deconvolution technique to esti-
mate the generalized transfer function. We �rst consider an
unconstrained deconvolution and observe that, while the re-
sulting estimate of H(n; !) has some interesting properties,
it does not display the change in frequency of a signal with
time. To overcome this problem we perform a constrained
deconvolution.

2.1. Unconstrained Deconvolution

To estimate H(n; !), we minimize the following mean
squared error function

MSE1 =

N�1X
n=0

Z �

��

jEfSBD(n; !)g � �1SBDH(n; !)j
2
d! (6)

where �1 is a normalization factor,

SBDH(n; !) =

Z �

��

1X
k=�1

1X
l=�1

W [l� n; k]H�(l� k; �)

H(l+ k; �)e�j(!��)2kd� (7)

is the right hand side of (4) and N is the length of the sig-
nal being considered. Since in practice only one realization
of the signal and consequently its TFR is available, we use
SBD(n; !) instead of EfSBD(n; !)g.

The error measure in (6) has no unique minimum. In
fact, any function of the form

H(n; !) = F (!)x(n)e�j!n (8)

where F (!) is an arbitrary, unit{energy function of !, yields
a zero MSE. This is easily shown by replacing (8) in (7).

It is interesting to remark that the signal can be recovered
from any of the solutions given by (8). In fact we have that

Z �

��

H(n; !)ej!nd! = x(n)

Z �

��

F (!)d! = x(n) (9)

Furthermore, the resulting ES is positive and satis�es the
time marginal [4], i.e.,

Z �

��

jF (!)x(n)e�j!nj2d! = jx(n)j2:

Finally, if F (!) = X(!), the Fourier transform of x(n), the
resulting ES also satis�es the frequency marginal [4] up to
a scale factor

N�1X
n=0

jX(!)x(n)e�j!nj2 = jX(!)j2
N�1X
n=0

jx(n)j2:

Unfortunately the expression in (8) results in a separable
function of time and frequency. Such a representation only
describes tones (or impulses) well. It is important to note

that many solutions (not in form of (8)) which are not sepa-
rable in time and frequency exist. To obtain such solutions,
we need to impose additional constraints on the minimiza-
tion problem.

2.2. Constrained Deconvolution

The objective is to obtain an H(n; !) that minimizes the
MSE in (6) and displays changing frequencies with time.
To this end, we formulate a constraint using the Wigner
distribution (WD). Namely, we minimize the MSE in (6)
and at the same time constrain the resulting ES to be as
close as possible to the WD without cross terms. For this
we de�ne a constraining error measure

MSE2 =

N�1X
n=0

Z �

0

��SWD(n; !)� �2jH(n; !)j2
��2M(n; !)d! (10)

where �2 is a normalization factor and M(n; !) is a mask
function used to suppress the cross terms. The mask func-
tion is set to the lowest entropy evolutionary periodogram
(EP) [3, 7]. This substantially reduces the e�ect of the cross
terms of the Wigner distribution.
The constrained deconvolution is then carried out by min-

imizing the following cost function

c = MSE1 +MSE2 (11)

where MSE1 is the original error measure given by (6) and
MSE2 is the constraining error function given by (10). The
two error measures in (11) can be minimized separately.
Possible solutions for MSE1 are of the form given by (8),
whereas the solution for MSE2 is given by

jH(n; !)j =

� p
SWD(n; !) SWD(n; !) > 0;

0 otherwise,
(12)

with arbitrary phase. However, none of these solutions min-
imize both errors at the same time and thus are not mini-
mum solutions of the cost function in (11). Since, it is not
possible to obtain a closed form solution to this cost func-
tion, we solve the problem iteratively using the conjugate
gradient method. As an initial estimate of the GTF, we use
the one obtained from the minimum entropy EP [3, 7].

The resulting GTF provides a positive estimate of the
ES with lower entropy than the initial estimate. Compared
with the EP, this GTF estimated spectrum is not limited
by the order of the orthonormal expansion functions and
as such it does not have the time{frequency trade{o� of
the EP. Furthermore, when blurred according to (3) TFRs
similar to those computed directly from the signal can be
obtained.

Just as in the unconstrained deconvolution case, the es-
timated GTF can be used to reconstruct the signal. While
the reconstruction is not perfect, it still o�ers a good ap-
proximation. Furthermore, the estimate of the evolutionary
spectrum obtained from the constrained deconvolution sat-
is�es the time marginal under a special condition. Namely,
if MSE1 given by (6) is reduced to zero, and the Wigner
distribution is chosen as the TFR to deblur.



3. APPLICATIONS OF THE GTF

3.1. Spectral Representation of Speech Signal

We apply the constrained deconvolution technique to a
31:25 millisec speech signal sampled at 8kHz (a portion of
the utterance \..... credit card, and we use that", spoken by
a female) [6]. The signal contains a sweeping formant and
some stationary formants. We used the GTF from EP with
M = 5 as our initial estimate and its magnitude square as
the mask function. The ES estimate corresponding to the
deblured GTF is shown in Fig. 1 and has an entropy of
13:5 bits. For comparison, Fig. 2 shows an estimate of the
TFR of the speech signal obtained by combining narrow{
band, wide{band and medium{band spectrograms. It has
an entropy of 14:4 bits. From the �gures it is clear that
while the spectrogram estimates su�er from excessive blur-
ring and are not able to track the frequency modulation
of the sweeping formant, the estimate of the ES obtained
by solving the constrained deconvolution clearly shows the
sweeping formant and simultaneously resolves the station-
ary formants. Furthermore, the ES obtained from the new
estimate of the GTF has a lower entropy than the one ob-
tained from a combination of spectrograms [6] showing that
the former is more informative than the latter.

3.2. Time{Frequency Masking of the GTF

Time{frequency masking [2, 12] has been used to obtain
signals corresponding to a particular region in the time{
frequency plane. Time{frequency masking was recently ap-
plied [11] to estimates of the GTF. The method consists of
multiplying the estimate of the GTF of the signal x(n) by
a positive mask function G(n; !) to obtain the GTF of the
desired signal y(n). The desired signal y(n) is then synthe-
sized through the Wold-Cramer relation given by (1). The
mask function is constructed such that it is equal to one in
the desired regions of interest and zero otherwise.

Now as an example consider a two{chirp signal given by

x(n) =
n(N � n)

N2
e
j(�

2
�
�n

4N
)n + 0:22ej(��

4�n

9N
)n (13)

where the length of data N used was 128. We choose to
deblur the EP to obtain an estimate of the GTF by solving
the constrained deconvolution problem described in Section
2.2. The ES corresponding to this estimate of the GTF is
depicted in Fig. 3. A mask function along the chirp rate of
the �rst component of the signal given by (13) is speci�ed,
i.e., the one whose frequency changes from �

2
to 0 as n goes

from 0 to N � 1. This mask function is shown in Fig. 4.
We multiply this mask function with the above mentioned
GTF to obtain a modi�ed GTF. Using this modi�ed GTF
we obtain a signal that is plotted as dashed lines in Fig.
5. Also shown as solid line in the same �gure is the actual
signal, i.e., the �rst component of the signal in (13). As can
be seen the recovery is almost perfect except for the small
error at the ends. The EP estimate of the signal displayed
in Fig. 6 shows that this signal corresponds to the correct
time{frequency region as speci�ed by the mask function.

4. CONCLUSIONS

We presented a deconvolution technique to estimate the
GTF of an LTV system. Deconvolution has been used be-
fore in time{frequency but the main purpose has been to
obtain a deblurred TFR. Estimation of the GTF not only
permits us to obtain a deblurred TFR but has many addi-
tional advantages as demonstrated by the applications pre-
sented. We presented constraints that permit us to arrive
at a desirable answer and illustrated the advantages of the
new method with the help of examples.
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Figure 1. ES of the speech signal
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Figure 2. Combination of three spectrograms: speech signal
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Figure 3. ES of the two chirp signal
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Figure 4. Mask Function
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Figure 5. Reconstruction, solid: actual, dashed: estimate
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Figure 6. EP of the signal obtained using the modi�ed GTF


