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ABSTRACT

A fully adaptive infinite impulse response notch filter
in cascade form is proposed to detect and track multiple
time-varying frequencies in additive white noise. Based on
transformations for digital filters in the frequency domain,
the filter results in a minimal number of parameters. In
addition, a simple adaptive algorithm with good tracking
and convergence properties is obtained by using all-pass
filters and truncating the gradient. Computer simulations
are included to verify the competitive performance of this
filter under a wide range of conditions. From this analysis,
we conclude that our new design is computationally
simple, achieves rapid convergence, and is consequently a
good choice in many non-stationary environments.

I. INTRODUCTION

The problem of designing adaptive notch filters (ANF)
for retrieving narrow-band signals immersed in broad-band
noise has received a great deal of attention since the late
70’s, when the first adaptive line enhancer (ALE) was
introduced by Widrow et al. [1]. This problem is often
considered a multifaceted one, for the interest can be
placed either on estimating the frequency of the signal, on
obtaining an enhanced version of it, or on tracking possible
variations with time of the sinusoids frequencies. In any
case, the application of such filters extends over a large
number of fields. Some examples are: analysis of radar
signals, removal of sinusoidal interference in biomedical or
control applications [2,3], cancellation of periodic
interference from signal measurements, tracking of a tone
with time-varying frequency in communications systems
[4,5], etc.

Our design basically derives from [6], with a
generalization for a higher-order case using the cascade
form and improved tracking capabilities by estimating both
the central frequency and the bandwidth of the notch filter
as in [7]. We also incorporate correction mechanisms for
resolving closely spaced sinusoids and for dealing with
very low or very high frequencies. This scheme is based on

frequency transformations for digital filters and for this
reason we call it the frequency-transform based notch filter
(FTBNF).

II. FREQUENCY-TRANSFORM BASED
NOTCH FILTER

By using the same transformation presented in [8] that
converts a low-pass filter into a band-elimination filter, a
new parametrization for a notch filter is introduced. These
transformations present several advantages such as using
all-pass structures, preserving spectral features after
transformation and simplicity of implementation. The
adaptation is accomplished by using the well-known
Recursive Prediction Error (RPE) algorithm with the
incorporation of several features, including an adaptive
time-varying notch bandwidth and forgetting factor.

A) Filter Structure Derivation

The artifice consists in starting with a simple filter
structure, which after a suitable transformation can be
tuned to the input sinusoid frequency. Consider the 1st-
order notch filter—a low-pass filter—given by
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This filter is best called a notch filter with its central
frequency located at ω0 = π. As it is, the filter in (1) is not
suitable for our problem since the only parameter we can
modify is ρ (the filter bandwidth). If we now apply the
low-pass-to-band-elimination transformation given in [8],
we have
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This transformed filter has its zeros on the unit circle at
z e j

0
0= ± ω , where ω 0  satisfies the relationship

ω α0
1= −cos . In addition, for ρ → 1 the poles are located

at z ep
j≈ ±ρ ω 0 . This is on the same radial line as the zeros

but slightly inside the unit circle.
In order to ensure that the filter has complex conjugate

poles, as required by the notch filter structure, we must add
another constraint. This limitation restricts the range of
frequencies the adaptive notch filter is able to remove.
Specifically, by examining the denominator of (2) the
constraint becomes

α ρ
ρ

2
2

4

1
<

+1 6
(3)

The direct-form parameterization for the notch filter given
by (2) may be useful to analyze certain filter
characteristics, such as the bandwidth or the zero and pole
location. Still, we are going to work with the structure
suggested by the transformation shown in Figure 1.

B) Algorithm Derivation

Recursive algorithms were extensively studied in the
literature and good approaches to this topic can be found in
[9-11]. For the FTBNF, we are going to implement the
well-known RPE algorithm with some modifications to
improve its performance. A very important element of
every adaptive algorithm is the gradient of the error signal.
Let us consider
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Now, using the shift operator q−1  defined by

q x t x t nn− = −( ) ( )  with integer n, we can rewrite (4) in

the time domain as A q e t B q y t− −=1 13 8 3 8( ) ( ) . Then, using

some assumptions from [10], the error gradient becomes

ϕ ∂
∂α

∂
∂α

∂
∂α

( )
( )

( )

( )
( )

( )
( )

t
e t

A q

B q
y t

A q
e t

n

n n

=

≈ −
�
!
 

"
$
#−

− −1
1

1 1 (5)

where the adaptive parameter is α and all derivatives are
taken with α=α(t−1). Then
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In order to simplify the algorithm further, we can use the
gradient truncation given by
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This simplification leads to the following expression for
the gradient
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It has been shown that the accuracy of the RPE
algorithm when dealing with ANFs depends on both the
forgetting factor of the estimation algorithm (λ) and the
pole contraction factor of the notch filter (ρ) [7,12]. In
addition, the parameter ρ plays a very important role when
tracking non-stationary signals. The closer ρ is to one, the
longer the transients are, and the slower the tracking of
rapidly changing signals becomes. Therefore, we need a
mechanism to vary ρ according to the input signal
dynamics. We incorporate the adaptive notch bandwidth
technique of [7]. This new adaptation is decoupled from
the minimization of the all-pass filter parameter. Then,
following the same analysis performed before, we have
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C) Multiple Sinusoid Case

The extension of the single-sinusoid case to the more
complex situation of having several sinusoids is not
straightforward and can be approached from different
perspectives. One such scheme uses the already described
2nd-order blocks and the convenient cascade form for
digital filters as shown in Figure 2. Dealing with several
sinusoids introduces some heretofore unconsidered issues.
The change of the error surface into a multi-modal function
is going to be one of the issues created by the increased
problem dimension. Other obstacles are the resolution of
closely spaced sinusoids, the tracking of signals with
different dynamics, and the increase in required
computational efforts. When tracking multiple sinusoids,
the cascade structure of Figure 2 is recommended [13].
When ρ is close to one, the bandwidths of each section do
not overlap and each section in Figure 2 can effectively
eliminate one sinusoid. So, instead of using the overall
output signal to adjust the filter coefficients, this frequency
decoupling property enables each section to be
independently minimized. This becomes especially
important when the frequencies in the input signal are time
varying and follow different dynamics.

The advantages offered by the cascade configuration
are manifold, and so we do not consider trying to
generalize one of the approaches discussed in [14] in this
paper. We note that this extended filter inherits all the
properties of the one previously discussed such as stability
monitoring, unimodality of the search surface, gradient
simplicity and algorithm structure.



III. PERFORMANCE EVALUATION AND
COMPARISON

We present now the results of a simulation study of the
proposed ANF. The simulations are programmed in
MATLAB  and run on a PC. The examples presented here
illustrate the behavior of the FTBNF under several
conditions and emphasize the advantages of this new
design. Parameters such as signal-to-noise ratio (SNR),
number of sinusoids in the input signal (n), number of
samples in the signal (N), and dynamics of the sinusoid
frequencies, were used to simulate the FTBNF response
under several operation environments.
The general input signal has the form
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where n(t) is the white Gaussian noise sequence with zero
mean and variance σ2; φi is a random initial phase
uniformly distributed in the interval [0,2π), and ϕi(t) is the
normalized phase for the i-th sinusoid. A normalized
sampling frequency of 2 Hz is assumed throughout. The

SNR for each sinusoid is defined as SNR
C

i
i=
2

22σ
, where

Ci is the amplitude of the i-th sinusoid and σ2 the noise
power. We are interested in evaluating the following
features:
• Algorithm convergence. When choosing ρ it is

important to consider three points; the effect in the
notch bandwidth, the shape of the error performance
surface, and the range of reachable frequencies
obtained by applying the constraint in (3) and using the
relationship ω=α cos .

• Estimation accuracy and operation range. A plot of the
true frequency vs. the estimated frequency is presented
in Figure 3 to validate our affirmation of accuracy.

• Filter tracking capabilities for different signal
dynamics.

• Algorithm convergence speed. The speed of
convergence is measured by computing the time tc
such that
� ( ) . * , , ,f t f f t t i ni i i c− < ≥ ∀ =0 05 1 2for �

The accuracy when the filter converges to the
correct set of parameters is intimately related to
the statistical analysis.

• Statistical properties such as the bias and standard
deviation of the estimated sinusoid frequencies.

• Computational complexity given by the algorithm
efficiency vs. simplicity and structure impact for the
gradient computation and stability monitoring.

We are only able to show the most relevant results in [14].

Simulation Results

We analyzed the tracking abilities of our algorithm
when dealing with multiple sinusoids each of them having
different dynamics. The plot in Figure 4 depicts the
behavior of the FTBNF showing the evolution with time of
the estimated frequency (f) and the constraint factor (ρ).
This simulation shows the superior tracking capabilities of
the FTBNF when compared to similar designs. While one
frequency is modulated with a ramp function (chirp
signal), the other one varies as a sine wave around f=0.4
Hz (FM signal), and the last one varies its frequency with
the previously used step function, from f=0.2 Hz to f=0.15
Hz at t=500. The FTBNF accurately follows the three
signals instantaneous variations.

IV. CONCLUSIONS

We addressed the problem of designing a fully adaptive
notch filter for detecting and tracking multiple non-
stationary sinusoid signals immersed in additive white
noise. We discussed the use of cascade structures and the
frequency transformations for digital filters that are given
by all-pass filters substituting for the basic delay operator.
The design and performance evaluation proved the new
filter suitability for its application over a large number of
situations. However, because of space restrictions a good
number of simulations could not be reported here. For a
more detailed analysis see [14].

The resulting notch filter transfer function has its zeros
on the unit circle and the poles on approximately the same
radial line, but slightly inside the unit circle to ensure the
filter stability. The adaptive parameters consist of the all-
pass filter coefficients and the corresponding pole
contractor factor for each section. The use of an a
posteriori prediction error improves the algorithm
convergence. On the other hand, gradient truncation is
feasible and efficient due to the explicit use of all-pass
filters in the notch filter transfer function. Performance for
non-stationary signals was improved by making the
parameter ρ adaptive. In this way, the notch bandwidth
broadens when frequency variations are detected, and
narrows after convergence has been achieved.
Summarizing, we can see that the FTBNF is the adequate
choice for non-stationary environments, where no a priori
information on the signals is provided. This new scheme
successfully tracks different signal dynamics under a wide
variety of conditions. In addition, the convergence time,
statistical performance and computational complexity are
not sacrificed to a great extent as proved in [14].
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Figure 1. Notch filter parametrization. The scheme
corresponds to a transformed notch filter at ω0 = cos-1α.
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Figure 2. Cascade form for the FTBNF. Each section is
formed with a 2nd-order FTBNF and the corresponding
independent adaptive algorithm.

E
st

im
a

te
d 

fr
e

q
ue

nc
y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Sinusoid frequency

Figure 3. Estimated frequency vs. true sinusoid frequency.
The symbol + represents the averaged estimated frequency
for 10 experiments. The signal has the form y(t)=Asin(πfnt)
+ n(t), with SNR=10dB.
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Figure 4. Simulation with non-stationary multiple
sinusoids using signals with different dynamics. A
chirp signal, an FM signal and frequency jump signal
at an SNR of 10dB for each component were
combined to generate the combined signal.


