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ABSTRACT

Blind channel equalization has recently been a very ac-
tive research topic due to its potential application in mo-
bile communications and digital TV systems. In this paper,
we present a new blind zero-forcing equalizer that utilizes
second order statistics from the multi-channel con�gura-
tion. The algorithm is simple and relies only on nullspace
decomposition. It can actively select the desired delay of
the equalizer output signal. The performance of this new
algorithm is demonstrated through simulation examples.

1. INTRODUCTION

In many data communication systems digital signals are
transmitted through unknown channels which introduce se-
vere linear distortion. In order to improve the system per-
formance, receivers must remove channel distortion through
equalization. When the available input training signal is
either non-existent, or too short for channel identi�cation,
blind channel identi�cation and equalization can play a use-
ful role.
Blind channel identi�cation relies solely on the received

channel output signal and some a priori statistical knowl-
edge of the original input signal. Traditionally, blind chan-
nel identi�cation and equalization are based on exploiting
higher order statistics of baud-rate sampled channel out-
put signals. The algorithm presented by Tong, Xu, and
Kailath [1], is one of the �rst subspace based methods ex-
ploiting only second order statistics for fractionally sampled
channel identi�cation. Using the sub-channel representa-
tion of the fractionally sampled QAM channels, Xu et al. [2]
derived a sub-channel matching algorithm that also relies
on the subspace separability of signal and noise. Another
subspace method for channel estimation similar to the well-
known MUSIC algorithm in array application was presented
by Moulines et al [3]. Since subspace separability requires
the knowledge of channel model orders, subspace methods
tend to be sensitive to errors in channel order estimates.
Many of the subspace methods for channel estimation

tend to be very unreliable when the channel order is over-
estimated. To avoid sensitivities to channel order, we adopt
a direct equalization approach to �nd the zero forcing equal-
izer, without the intermediate step of channel estimation.
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Our goal is to avoid the sensitivity to unknown channel or-
der su�ered by many SOS methods.
This paper is organized as follows. In Section 2, we �rst

describe the statistical model of the blind multi-channel
equalization problem. Spectral diversities achieved from
over-sampled channel output and multiple sensors (anten-
nas) are considered. In Section 3 we present our new al-
gorithm, with a proof of perfect equalization in the zero
noise case. Implementation issues and simulation results
are presented in Sections 4 and 5, respectively.

2. PROBLEM FORMULATION

Multi-user quadrature amplitude modulation (QAM) data
communication systems can be described using a baseband
representation. Assume that there are N user channels,
all linear and causal with impulse responses fhu(t); u =
1; 2; : : : N g. The received output signal can be written as

x(t) =

NX
u=1

1X
k=�1

sk;uhu(t� kT ) + w(t); sk;u 2 Au; (1)

where T is the symbol baud period and Au is the input
signal set of user u. The channel input sequences fsk;ug
are typically independent for di�erent users and are also
i.i.d. The noise w(t) is stationary, white, and independent of
channel input sequences sk;u, but not necessarily Gaussian.
Note that hu(t) is a \composite" channel impulse re-

sponse that includes transmitter and receiver �lters as well
as the physical channel response. In a typical multi-user
system, multiple channels of observations will be available
from multiple sensors. If J sub-channels (sensors or anten-
nas) exist, then x(t), hu(t), and w(t) are all J � 1 vectors.
In blind channel identi�cation, the objective is to identify

the unknown channel responses hu(t) based solely on the
channel output x(t). Only the statistical knowledge of the
channel input sequences is known, not their actual values.
In blind equalization, the desired objective is to recover each
channel input, without necessarily needing to estimate the
channel responses. The problem of single user (N = 1) and
single channel (J = 1) blind identi�cation and equalization
requires the application of higher order statistics. It has
been studied in works such as [6, 7, 8] and references therein.
It has been shown by Tong, et al.[1] that blind channel

identi�cation bene�ts from oversampling the channel out-
puts. In fact, single channel identi�cation based on sec-
ond order statistics is possible only for oversampled chan-



nel outputs. This essentially arises from the spectral diver-
sity available when the channel has bandwidth higher than
1=2T .

Let the sampling interval be � = T=p where p is an
integer. The oversampled discrete signals and responses
are

xi
�

= x(i�); hu[i]
�

= hu(i�) and wi
�

= w(i�); (2)

each of which is a J � 1 vector for integer i. The channel
output samples are hence

xn =

NX
u=1

1X
k=�1

sk;uhu[n� kp] + wn:

Suppose fhu(t)g has joint �nite support which spans
m0+1 integer baud periods. LetMp be the number of sam-
pled channel outputs to be collected in a block and let the
superscript (:)0 represent the matrix transpose. By de�ning
the following notation

sk
�

= [sk;1 sk;2 : : : sk;N ];

s[k]
�

= [sk sk�1 : : : sk�m0�M+1]
0

w[k]
�

= [w0kp w0kp+1 : : : w0kp�Mp+1]
0

hu[i]
�

=

2
664

hu[ip]
hu[ip+ 1]

...
hu[ip+ p� 1]

3
775 ;

Hi
�

= [h1[i] h2[i] : : : hN [i]];

it is evident that

2
664

xkp
xkp+1
...
xkp+p�1

3
775 =

m0X
i=0

His
0

k�i +

2
664

wkp
wkp+1
...
wkp+p�1

3
775 :

Now form anMpJ�(m0+M)N block Toeplitz matrix with
(M � 1)N trailing zeros in the �rst pJ rows

H
�

=

2
6664

H0 H1 : : : Hm0 0 : : : 0

0 H0 H1 : : : Hm0

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 : : : 0 H0 H1 : : : Hm0

3
7775 :

(3)
Clearly, m0 is the order of the N dynamic FIR chan-
nels. Were we to need them, there would be a total of
(m0 + 1)NpJ unknown parameters to identify in the blind
identi�cation problem. Instead, our algorithm will bypass
channel estimation, and will provide channel equalizers di-
rectly.

Let Q = Jp be the total number of stationary outputs
(p from oversampling and J from multiple antennas). With
this notation, a sampled channel output signal vector of

length MQ can be written as

~x[k]
�

=

2
66666666664

xkp
xkp+1
...

xkp+p�1
x(k�1)p
x(k�1)p+1

...
xkp�Mp+1

3
77777777775
= Hs[k] +w[k]: (4)

3. ZERO-FORCING CHANNEL

EQUALIZATION

The additional channel zero condition for H to be full rank
has been characterized in [12] and is not the focus of our
work. We shall assume, from here on, that H has full
column-rank and is identi�able.
Assume that both the channel input signal and channel

noise are white with zero mean. Let their respective covari-
ance matrices be

Rs = Efs[k]s[k]Hg = �2sI

and
Rw = Efw[k]w[k]Hg = �2wI:

Using the block Toeplitz channel convolution matrix H, we
have

Ri
�

= Ef~xk~x
H
k+ig = �2sHJ�iNHH + �2nJ

�iQ: (5)

J is the Jordan matrix which has unit entries on its �rst sub-
diagonal and zero everywhere else, and J�1 is the transpose
of J . If the channel is noiseless, then �2n = 0.
Denote the parameter vector of the equalizer as ~g. Ze-

roforcing equalization requires that no inter-symbol inter-
ference remains after equalization. De�ne ~ei as the i�th
coordinate unit vector of dimension N(M +m0) � 1. For
N users, zero ISI requires that

HH~g =

NX
k=1

�iN+k~eiN+k; i = 0; 1; 2; : : : (m0+M�1):

(6)
where �k is a constant for each k. Equation (6) e�ectively
states that only N elements (one for each user) from the
input vector s[k] will appear at the equalized output. And
since the channel inputs sk shift through s[k], each input
will be observed (without ISI) at the equalized output with
delay iT .
Our algorithm is derived under noiseless conditions.

Theorem 1 Consider noiseless systems with �2w = 0. Let

Ki
�

= Nullspace(Ri), where Ri is de�ned in (5). If the
equalizer parameter vector ~gi+1 satis�es

~gi+1 2 Nullspace

�
Ri+1
KH
i R0

�
; subject to R0~gi+1 6= 0,

(7)

then HH~gi+1 =
PN

k=1
�iN+k~eiN+k .



Proof: For noiseless output

Ri = HJ�iNHH ;

in which H has full column rank. As a result,

J�iNHHKi = 0:

Hence,
Ki � Ki+1

and
dim(Ki+1) = dim(Ki) +N:

Also, from the up-shifting property of J�iN , it can be shown

HHKi = [~e1 ~e2 � � � ~eiN ]A

where A is an iN � (i+ d0)N matrix with column rank iN
and full-row rank of iN .
If we �nd a ~gi+1 2 Ki+1, then

J�(i+1)NHH~gi+1 = 0;

which implies that

HH~gi+1 =

(i+1)NX
k=1

�k~ek = [~e1 ~e2 � � � ~e(i+1)N ]~�: (8)

for suitable �k. Because of the additional requirement that
~gi+1 is orthogonal to R0Ki, then for noiseless channels

KH
i HHH~gi+1 = 0: (9)

This implies that

AH

2
664

~e1
~e2
...
~eiN

3
775 [~e1 ~e2 � � � ~e(i+1)N ]~� = 0: (10)

[AH ~0]~� = 0: (11)

When AH has full column rank, it is simple that

�k = 0; k = 1; 2; : : : ; iN:

Hence

HH~gi+1 =

(i+1)NX
k=iN+1

�k~ek =

NX
k=1

�iN+k~eiN+k

which holds for each i = 0; 1; 2; : : : (m0 +M � 1).
Q.E.D.

Theorem 1 therefore describes the steps needed to �nd a
zeroforcing equalizer with delay i for noiseless channels. It
is clear that ideally

dim

�
Nullspace

�
Ri+1
KH
i R0

��
= d0 +N: (12)

However,
only N vectors satisfy the constraint ~gHi+1R0~gi+1 6= 0: For

noisy channels with higher SNR, this approach is expected
to remain e�ective in canceling ISI. De�ne

di
�

= dim(Ki) = d0 + iN:

The major obstacle in noisy systems is to accurately esti-
mate d0. In addition, one must �ndN vectors among d0+N
nullspace vectors that result in larger output signal power
~gHi+1R0~gi+1 6= 0:

4. IMPLEMENTATION ISSUES

There are two di�culties in implementing our new algo-
rithm when there is noise in the measurements. First it is
necessary to estimate d0, and second it is necessary to pick
the N best equalizers from the set of ~g's obtained (there are
d0 +N of them for each delay i).
The �rst problem arises because the nullspace of the Ri's

cannot be accurately obtained in noise. An algorithm to
overcome this is to estimate K0 (for example, using the
Akaike information criterion (AIC) or Schwartz and Rissa-
nen's MDL criterion) and set d0 accordingly. Then Ki can
be estimated by setting di = d0+ iN . The estimation of d0
requires an eigen decomposition of R0.
The second problem is critical. The di�erence between

achieving an outstanding BER and a terrible BER is in the
choice of which ~g to use. To choose N equalizer vectors
among d0 + N potential solutions, we propose two meth-
ods for selecting the desired equalizer vector(s). The �rst
method is to select the ~g that maximizes the equalizer out-
put power ~gHR0~g. The second method involves maximizing
the ratio between the output power and a measure of the
ISI power (~gHi+1R0~gi+1)=(jjRi+1~gi+1jj

2).
It turns out there are two additional implementation

modi�cations for noisy conditions. Simulations show that
setting rows of the estimates of Ri's to zero for large i is
greatly bene�cial. This e�ectively ignores those equations
in the nullspace evaluation of (7) that involve autocorre-
lation functions of large delays (which are typically small
and sensitive to noise). Also, when the channel have small
pre-cursor and post-cursor ISI, the ~g1s generated from the
R1 tend to be unreliable. It can be advantageous to not use
~g1.

5. SIMULATION RESULTS

We now present simulation results to illustrate the perfor-
mance of the proposed algorithm. We use a multi-path
channel model with a single sensor, i.e., J = 1. We con-
sider a raised-cosine pulse P (t) limited in 6T with roll-o�
factor 0:1 and a two ray multi-path channel. The overall
channel impulse response is

h(t) = c(t) � P (t) = P (t)� 0:7P (t � T=3)

A single user is assumed. The data input signal is i.i.d.
BPSK and the oversampling factor is p = 2. We also choose
M to be as long as P (t).
Figure 1 shows the bene�t of setting rows of the esti-

mates of Ri's to zero for large i. For this plot, d0 is as-
sumed known, and in this case equals 1. This implies that
there are 12 elements in the measurement vector ~x[k]. Also,
the equalizer selection from the ~g's is done on the basis of



maximum output power. The �gure shows that excellent
equalization is achieved for SNRs bigger than about 15dB.
This �gure compares favourably with other linear equaliza-
tion algorithms.
Figure 2 shows the small sensitivity to incorrect d0 es-

timates. For this simulation, there are 14 elements in the
measurement vector ~x[k] (2 more than the minimum re-
quired for the channel we are using), resulting a d0 = 2. But
because of the small samples of h(t) at both ends, leading
and trailing columns of H matrix is small, making d0 � 2
in estimation. We also show how the output power crite-
rion can be used to select the equalizer vector without much
loss in performance. The output power (o/p power curve)
di�ers from the best ~g (i.e. if you were able to check BER
for each one) only when SNR is very large. For this sim-
ulation, we have neglected the ~g1 generated from R1 since
it was observed that R1 produces unreliable equalizers for
d0 > 1.
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Figure 1. Advantage of setting rows of R to zero
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6. CONCLUSIONS

We present a new blind equalizer that is derived from the
zeroforcing principle. The algorithm relies only on second
order statistics of the unknown channel input and output.
The algorithm is simple and relies only on nullspace decom-
position. It allows the receiver to actively select desired de-
lay of the equalizer output signal. This method is general
for multiple user systems.
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