
TIME-FIRST SEARCH FOR LARGE VOCABULARY SPEECH RECOGNITION

Tony Robinson01 and James Christie1

SoftSound Limited0 Cambridge University1

ajr@softsound.com fajr,jdmc2g@eng.cam.ac.uk

ABSTRACT
This paper describes a new search technique for large vocabulary
speech recognition based on a stack decoder. Considerable mem-
ory savings are achieved with the combination of a tree based lex-
icon and a new search technique. The search proceeds time-first,
that is partial path hypotheses are extended into the future in the
inner loop and a tree walk over the lexicon is performed as an
outer loop. Partial word hypotheses are grouped based on lan-
guage model state. The stack maintains information about groups
of hypotheses and whole groups are extended by one word to form
new stack entries.

An implementation is described of a one-pass decoder em-
ploying a 65,000 word lexicon and a disk-based trigram language
model. Real time operation is achieved with a small search error, a
search space of about 5 Mbyte and a total memory usage of about
35 Mbyte.

1. INTRODUCTION

Search is an interesting problem in the field of large vocabulary
speech recognition. Typically the acoustic vectors corresponding
to an utterance may be coded in a few thousand bytes and the
lexical output in a few hundred bytes. Yet in between we often
need tens or even hundreds of megabytes of memory to perform
the search for the maximum likelihood word sequence. The to-
tal amount of memory used is often much larger than this as the
acoustic and language models may be of considerable size.

The memory required for the acoustic and language models
need not be large. For example, the techniques of vector quanti-
sation and recurrent neural networks [7] provide compact acoustic
models. Similarly a class based language model may be used or
most of the language model may be based on disk and paged in
when needed [5]. Thus this paper addresses the remaining source
of memory usage, that is the search space.

The paper is organised as follows. Section 2 presents the time-
first algorithm for the case of isolated word recognition. Section 3
then extends this to large vocabulary continuous speech recogni-
tion. A particular implementation is then described in section 4
and finally the paper concludes with a discussion of comparable
search techniques and related areas.

2. ISOLATED WORD RECOGNITION

This section describes a reordered search strategy for large vocab-
ulary isolated word recognition with hidden Markov models2. A
word model is composed of a sequence of phone models accord-
ing to a pronunciation dictionary. An example is given in table 1
which is taken from BEEP3. Figure 1 shows the hidden Markov

0SoftSound Ltd., PO Box 802, St Albans, AL3 4BF, United Kingdom.
1Cambridge University Engineering Department, Trumpington Street,

Cambridge, CB2 1PZ, United Kingdom.
2It is also applicable to other dynamic programming based searches
3ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/BEEP.tar.gz

A ah
A ey
A’S ey z
ABANDON ax b ae n d ax n
ABANDONED ax b ae n d ax n d
ABANDONING ax b ae n d ax n ih ng
ABANDONMENT ax b ae n d ax n m ax n t
ABBEY ae b iy
ABBOT ae b ax t

Table 1: Word pronunciations

model for a single word,ABBOT. It is composed of the phonesae ,
b ax andt and for simplicity single state phone models have been
used4. As is conventional,O(t) represents the observation at time
t, bi(O(t)) the likelihood of observingO(t) given that it came
from statei andaij the probability of transition from statei to
statej. The dynamic programming search for the most likely state

ae b ax t

O(3) O(4) O(5) O(6)O(2)O(1)

Figure 1: A simple hidden Markov model

sequence can be expressed as finding the maximum sum of log
emission and log transition probabilities. The initialisation condi-
tion specifies that only the first state is valid at the start:

�i(0) =
n

0 i = 0
�1 i > 0 (1)

and at every subsequent(j; t) the most probable path is chosen:

�j(t) = max
i

(�i(t� 1) + log aij) + log bj(O(t)) (2)

Conventionally the search for the most probable state sequence
proceeds time synchronously. This is illustrated in figure 2 where
the values of�j(t) are computed in the numbered sequence5. The
global best path is determined by tracing back the best transitions
from the end to the start (shown in bold). This process is repeated
for each word in the vocabulary and the most probable match is
chosen as the recognised word. However, instead of performing
the search as:

4Three state, left to right, context-dependent hidden Markov models are
currently the most popular

5In this example the points labelled 2, 3, 4, 7, 8 and 12 are not accessible
and therefore may be explicitly excluded from the search. Similarly, points
13, 17, 18, 21, 22 and 23 can never be on the best path and may also be
excluded.



O(1) bae

O(2)

O(3)

1

bae

bae

1

O(4) bae

bae

O(5) bae

O(6)

tim
e

ax

ax

ax

ax

ax

ax t

t

t

t

t

t

24

HMM state

2

6

9 11 12

14 15 16

18 19 20

22 23

5

13

17

21

10

3

7 8

4

Figure 2: The standard dynamic programming search

for t = 1 to T
for j = 1 to N

�j(t) = maxi (�i(t� 1) + log aij) + log bj(O(t))

for “left-to-right” hidden Markov models it may equally well be
carried out as:

for j = 1 to N
for t = 1 to T

�j(t) = maxi�j (�i(t� 1) + log aij) + log bj(O(t))

as illustrated in figure 3. This is advantageous if the next item to

O(1) bae

O(2)

O(3)

1

bae

bae

2

3

1

O(4) bae

bae

6

7

8

9

4

O(5) bae

5 11

12

10

O(6)

tim
e

13

14

15

16

17

18

ax

ax

ax

ax

ax

ax t

t

t

t

t

t

19

20

21

22

23

24

HMM state

Figure 3: The reordered search

be searched shares a common prefix, such as the wordABBEY,
shown in figure 4. Computation numbers 1–12 can be retained
from the previous word, 13–24 are discarded and 25–30 added. In
general we may search a complete pronunciation tree in this way.
The tree for table 1 along with the computation order is shown in

O(1) b iyae

O(2)

O(3)

1

HMM state

b iyae

b iyae

2

3

1

O(4) b iyae

b iyae

6

7

8

9

4

O(5) b iyae

5 11

12

10

O(6)

tim
e

25

26

27

28

29

30

Figure 4: Sharing prefix computations in the reordered search

figure 5. Tree structures have several advantages. They represent
the lexicon more compactly than the simple linear structure whilst
maintaining a unique path for each word. When searching a tree
structure the shared prefixes results in fewer computations. Also,
when pruning is employed, large areas of the search space can be
disregarded with one decision.

However, with the reordered search strategy there is an addi-
tional advantage, that is the memory required to store the values of
�i(t) scales asT by the longest word in the lexicon as the memory
can be reused as a stack. In the case of table 1 and figure 5 this re-
quires a memory structure ofT x 11 locations to search the word
ABANDONMENTwith all other searches reusing the lower memory
locations.

The 65,000 word speech recognition system detailed in the
next section contains an average of 1.08 pronunciations per word
and has 136963 nodes in the pronunciation tree. The maximum
tree depth is 20 nodes and the average word length is 26 observa-
tions. Assuming no pruning and that the details of the best path are
not required, the time-synchronous algorithm uses 136963 storage
locations and the new search algorithm requires 520 (20 x 26) stor-
age locations6.

3. CONTINUOUS SPEECH RECOGNITION

Continuous speech recognition in a stack decoder framework in-
volves growing a tree of word hypotheses. In a simple implemen-
tation each leaf in the tree corresponds to one element on the stack.
The stack may be ordered by time or by expected total path proba-
bility. Processing consists of popping the top item from the stack,
extending it by each word in the lexicon and inserting the extended
hypotheses into the stack. In addition, the finite state property
of N -gram language models may be exploited by only maintain-
ing the most probable stack item for each unique language model
state. The list of word hypotheses to be processed may be kept on
a global stack as in the implementation of Paul [4] or on one stack
per time slot as in the NOWAY decoder of Renals [6].

When employing the time-first search strategy it is advanta-
geous to group together, as one stack item, a sequence of word

6Both algorithms require the storage of the pronunciation tree, however
this may be kept in read-only memory



ae

ae

ax

ah

ax

ey

ax ih

m

ng

ax

t

b

iy

b

z

n d n

d

n t

ABBOT

ABBEY

A ABANDONED

A’S

ABANDONING

A

ABANDON
1-6 7-12

13-18 19-24

25-30

31-36

37-42 43-48 49-54 55-60 61-66 67-72 73-78

79-84

85-90 91-96

97-102127-132 103-108 109-114 115-120121-126

ABANDONMENT

Figure 5: A tree structured lexicon showing the order of the computation steps

hypotheses where each hypothesis has associated with it the accu-
mulated log probability and its location as a leaf in the tree of word
hypotheses. Each stack item may be extended by all words in the
lexicon by the method of section 2. For example, consider the joint
recognition of the wordABBOTfollowed by the wordABBEYas
in figure 6. The left hand side is the last column of figure 3 and
shows the result of computation steps 22–24 which would appear
as a stack item. The right hand side represents new computation,
numbered as steps 133–144 and 157-162. Here it can be seen that
there are three possible exit points from the wordABBOTwhich
form entry points into the wordABBEYand that a data structure
which groups together this information will result in more efficient
search compared with treating each path independently. Items held

t

t

t

b iyae

b iyae

b iyae

b iyae

b iyae

b iyae

tim
e

HMM state

133

134

135

136

137

138

139

140

141

142

143

144

157

158

159

160

161

162

O(4)

22

23

24

O(5)

O(6)

O(7)

O(8)

O(9)

O(10)

Figure 6: Joint recognition of two words

on the stack now consist of:

1. the language model state (i.e. the lastN � 1 words)
2. the range possible end times for this language model state
3. for each end time:

(a) the accumulated log probability
(b) the location in the word hypothesis tree

These items are assembled into a priority queue organised as a
heap partially ordered on time. Additionally a separate hash table
of language model states is maintained so that any item in the heap
may be rapidly indexed by its language model state. The history
pointer indicates the leaf of the tree representing all active partial
paths.

The heap is initialised by inserting the NULL partial path rep-
resenting the start of the sentence. Each processing slot consists of
popping the item on the top of the heap and extended by one word
to give one or more new word histories. The hash table is con-
sulted to decide whether these new paths should be merged with
an item already existing on the heap or whether a new item should
be added to the heap. Processing terminates where there are no
items left on the heap.

while heap is not empty
pop the top item from the heap
expand the set of hypotheses (section 2)
for each extension

if not seen before then
add to heap

else
update appropriate item with these paths

A conventional beam search can be used to prune the search
space. A record of the highest path probability to every frame is
maintained and the search is pruned if the current hypothesis is
less likely than a fixed fraction of the highest path probability. An
online garbage model is used to control the beam and so to limit
the growth of novel path extensions.

Unigram smearing is employed in order to smooth the sharp
discontinuity of the language model probabilities which would oth-
erwise occur at the end of the tree.

4. INITIAL IMPLEMENTATION

To verify the principles of the previous sections a large vocabulary
system was built for British English. This used the four recurrent
neural network acoustic models and the test data from the SQALE
evaluation [8] and a 65,000 word language model based on ARPA
CSR language model texts and the British National Corpus. The
language model contained 11,166,722 bigrams and 13,368,797 tri-
grams. Context independent phone models are used with a re-
peated state to enforce a minimum phone duration.

The evaluation was performed on a UltraSparc2 running at



300MHz7. A disk-based language model was implemented along
the lines of [5]. This component read in complete bigram and tri-
gram tables on first query and cached them according to a simple
age based replacement policy. Pruning thresholds were adjusted
to obtain real-time performance. Approximate CPU and memory
usage is given in table 2

Component Memory usage CPU usage
Acoustic models 5M 25%
Lexicon and unigram 5M -
Pronunciation tree 5M -
Search 5M 30%
LM access 15M 45%

Table 2: Memory and CPU breakdown

The real-time system had a word error rate of 17.7% compared
with the case when it was believed that there were no search errors
which had an error rate of 16.8%. The difference is a 5% increase
in the number of errors and is of the same order as implementation
differences in decoding algorithms8. For completely memory resi-
dent operation the language model required about 190 Mbyte. The
NOWAY process size was about 370 Mbyte and the new decoder
with a memory based language model ran in about 200 Mbyte.

All figures in this section are approximate and are provided
only to indicate that significant memory savings are possible. Fur-
ther investigation into pruning thresholds, least-upper bound es-
timators, language-model smearing techniques, LM cache expiry
strategies and standard code optimisations are likely to have a sig-
nificant effect.

5. RELATED WORK AND CONCLUSIONS

The time-synchronous Viterbi decoder with a tree based lexicon
provides the basis for most current large vocabulary decoders. How-
ever, if a trigram (or longer N-gram) is to be used as the language
model then certain modifications need to be made to allow reason-
able execution time and memory usage. The decoder of Odell [3]
uses dynamic memory allocation. The decoders from BBN [2] and
CMU [5] make a first pass approximation to the trigram to make
the state space usage equivalent to a bigram (this approximation is
fixed in a subsequent pass). Other similar systems resort to em-
ploying a bigram language model on the first pass and rescoring
the generated lattice with the more detailed language model on a
subsequent pass.

The other main field of decoders are those based on a stack.
There may be one stack in total (as in this paper) or one stack for
every time frame. Stacks may be ordered, partially ordered or un-
ordered. Notable systems are the IBM stack decoder [1], Doug
Paul’s stack decoder [4] and NOWAY written by Steve Renals [6].
The system that has been described here differs from all these other
implementations in that a stack item consists of a group of par-
tial paths, all of which have the same language model state. This
results in more efficient implementation as fragmentation of lan-
guage model unique paths occurs much less frequently.

The organisation of a decoder that employs a single stack where
each item corresponds to a time range, has a unique language
model state and is propagated time-first has many advantages:

� The memory usage for search is very small

7The operating system was Solaris 2.5.1 with 768M of RAM, 2M L2
cache and a 16k/16k L1 cache. The disk drive is a Seagate Barracuda
ST34371W with a cache of 512K and a seek time of 8.8ms

8The baseline NOWAY error rate using the same acoustic models was
17.5% and the “demo” mode was 18.1%. The differences have been traced
to minor implementation details such as the interword-pause and are not
thought to be significant

� Search is fast – real time performance may be achieved
� Like most stack-decoders continuous operation is relatively

easy to implement
� The search strategy is cooperative with a standard CPU

memory cache in that many operations fall into a small
physical memory range

� The search strategy is cooperative with language model ac-
cess patterns as the aim is that a particularN -gram is asked
for only once

� More sophisticated acoustic models such as segmental mod-
els are naturally incorporated as the previous state accumu-
lated log probabilities are readily to hand

� Pruning and memory allocation share the same strategy and
so work together

In conclusion, the new algorithm allows real-time large vocabulary
search to be performed with a modest (5%) increase in the number
of errors and requires very little operational memory.

6. ACKNOWLEDGEMENTS

This work was supported in part by the ESPRIT Long Term Re-
search Project (23495) THISL9 and a grant from Hewlett Packard
Laboratories, Bristol. Steve Renals of Sheffield University has pa-
tiently explained his NOWAY decoder over the years. Philip Clark-
son provided the language model toolkit used and Gary Cook as-
sisted with the processing of the acoustic data, both from Cam-
bridge University.

7. REFERENCES

[1] L. R. Bahl and F. Jelinek. Apparatus and method for deter-
mining a likely word sequence from labels generated by an
acoustic processor. US Patent 4,748,670, May 1988.

[2] Long Nguyen and Richard Schwartz. Efficient 2-pass n-best
decoder. InProceedings of the DARPA Speech Recognition
Workshop, pages 100–103, February 1997.

[3] Julian James Odell.The Use of Context in Large Vocabulary
Speech Recognition. PhD thesis, Cambridge University Engi-
neering Department, March 1995.

[4] D. B. Paul. An efficient A* stack decoder algorithm for contin-
uous speech recognition with a stochastic language model. In
Proc. ICASSP, volume 1, pages 25–28, San Francisco, 1992.

[5] Mosur K. Ravishankar. Efficient Algorithms for Speech
Recognition. PhD thesis, Carnegie Mellon University, 1996.
Also technicat report CMU-CS-96-143.

[6] Steve Renals and Mike Hochberg. Decoder technology for
connectionist large vocabulary speech recognition. Techni-
cal Report CUED/F-INFENG/TR.186, Cambridge University
Engineering Department, 1994.

[7] Tony Robinson, Mike Hochberg, and Steve Renals. The use
of recurrent networks in continuous speech recognition. In
Chin-Hui Lee and Frank K. Soong, editors,Advanced Top-
ics in Automatic Speech and Speaker Recognition, chapter 7.
Kluwer Academic Publishers, 1996.

[8] S. J. Young, M. Adda-Dekker, X. Aubert, C. Dugast, J.-L.
Gauvain, D. J. Kershaw, L. Lamel, D. A. Leeuwen, D. Pye,
A. J. Robinson, H. J. M. Steeneken, and P. C. Woodland. Mul-
tilingual large vocabulary speech recognition: the European
SQALE project. Computer Speech and Language, 11:73–89,
1997.

9http://www.dcs.shef.ac.uk/research/groups/spandh/projects/thisl.html


