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ABSTRACT

Compression of digital ElectroCardioGram (ECG) signals
has traditionally been tackled by heuristical approaches. Re-
cently, it has been demonstrated [1] that exact optimization
algorithms outclass these heuristical approaches by a wide
margin with respect to reconstruction error. As opposed to
traditional time-domain algorithms, where some heuristic is
used to extract representative signal samples from the orig-
inal signal, the exact optimization algorithm in [1] formu-
lates the sample selection problem as a graph theory prob-
lem. Thus well known optimization theory can be applied
in order to yield optimal compression. In [1], linear interpo-
lation is applied in reconstruction of the signal. This paper
generalizes the optimization algorithm such that reconstruc-
tion can be made by second order polynomial interpolation
in the extracted signal samples. The polynomials are fitted
in a way that guarantees minimal reconstruction error, and
the method proves good performance compared to the case
where linear interpolation is used in reconstruction of the
signal.

1. INTRODUCTION

The amount of data involved in storage and transmission
of digital ElectroCardioGram (ECG) signals is large. It is
therefore an apparent need to compress such signals in order
to keep the amount of data in manageable sizes. The com-
pression must be done in a way that makes accurate recon-
struction of the signal possible. Time-domain algorithms for
signal compression is based on the idea of extracting a sub-
set of signal samples from the original signal. Which signal
samples to be extracted depend on the underlying criterion
for the sample selection process. To get a high performance
time-domain compression algorithm, much effort should be
put in designing intelligent sample selection criteria.

Most of the well known time-domain compression al-
gorithms for ECG signals today, are based on fast heuristics
in the sample selection process. Examples of such algo-

rithms is the popular FAN algorithm [2], the well known
AZTEC [3] algorithm and recently attempts of improve-
ments to time-domain algorithms, such as SLOPE [4] and
AZTDIS [5]. The common stamp of these algorithms is that
they are all based on some heuristic criterion and therefore
they are all suboptimal. As opposed to these algorithms, the
Cardinality Constrained Shortest Path(CCSP) algorithm
presented in [1] is based on a rigorous mathematical model
of the entire sample selection process. By modelling the
signal samples as nodes in a graph, optimization theory may
be applied in order to achieve the best compression possible
under the given circumstances. Which compression that is
“best” depends on the error measure that is considered. In
[1] the goal is to minimize the reconstruction error given a
bound on the number of samples to be extracted. The sam-
ples of the original signal are modeled as nodes in a directed
graph. Any pair of nodes are connected with an arc, the di-
rection of which is given from the sample order. Including
a particular arc corresponds to letting the end nodes of the
arc constituting consecutive samples in the extracted sub-
set of signal samples.The length of each arc in the digraph
can be defined in a variety of ways. In [1] the length of the
arc connecting two samplesi and j is defined as the con-
tribution to reproduction error from eliminating all samples
recorded betweeni andj. Defining the problem in this way,
minimization of the reconstruction error can be recognized
as solving thecardinality constrained shortest path problem
defined on the graph.

Reconstruction of a signal compressed by any of the
time-domain algorithm mentioned so far is done by linear
interpolation between the elements of the extracted subset
of signal samples. This is a simple, but computationally ef-
fective way of reconstructing the signal. However, an ECG
signal is not linear in its nature, but rather more curvaceous.
It would therefore be interesting to investigate if it is pos-
sible to get a better approximation to the original signal,
under the same compression ratio, by using a polynomial
of higher degree in reconstruction of the signal. In this pa-
per we therefore demonstrate how the algorithm in [1] can



be further developed in order to reconstruct the signal by
second order polynomials.

Applying linear interpolation in the reconstruction phase,
the algorithm in [1] is proven to converge in cubic time. In
[6] it is demonstrated how to cope with real time constraints
of the algorithm. In this paper it is shown that the idea pre-
sented in [1], and roughly sketched here, can be applied to
the case where polynomial approximation is used in recon-
struction of the signal without increasing the computational
complexity of the algorithm.

In the next section the problem is defined in strict math-
ematical terms. Section 3 is devoted to the solution method.
Finally, computationally results are reported, and in the con-
cluding section different aspects of the method along with
future work are considered.

2. OPTIMIZATION MODEL

Denote the samples taken from an ECG signal at constant
interval byy(1); y(2); :::; y(N). Let M denote the bound
on the number of extracted samples andS denote thesam-
ple setS = fy(1); y(2); :::; y(N)g. We seek an appropri-
atecompression setC = fn1; n2; :::; nMg � f1; 2; :::; Ng
and the corresponding sample values. Assumen1 = 1 and
nM = N . The approximation is then given bŷy(n) = y(n)
if n 2 C andŷ(n) = fnk;nk+1(n) wherenk < n < nk+1
for all n =2 C; n 2 f1; 2; :::; Ng. Herefnk;nk+1(n) denotes
a presumed reconstruction ofy(n) based ony(nk), y(nk+1)
and all the intermediate samples and will be given a precise
definition in the next section. In this way we get a piecewise
approximation to the original signal. Between two sample
amplitudes corresponding to two succeeding elements ofC,
different functions are used in reconstruction of the signal.
The choice ofC will thus have a vital importance for the
quality of our approximation of the signal.

Define the directed graphG = (V;A) whosevertex
set V = f1; 2; :::; Ng and arc setA contains node pairs
(i; j) wherei; j 2 V andi < j. If n1; nM 2 V , the set
(n1; n2; :::; nM ) is said to be apath from n1 to nM in G
if n1; :::; nM 2 V are distinct vertices andn1 < n2 <
� � � < nM . Let Pn denote the path from node1 up to
noden. The length of each arc(i; j) in A is given as the
contribution to the total reconstruction error by eliminat-
ing all nodes betweeni and j. This can be expressed as
c2ij =

Pj�1
n=i+1(ŷ(n) � y(n))2. The length ofPn will thus

be the sum of the length of all arcs included in the path up
to noden. Each arc(i; j) in A represents the possibility
of letting i andj be consecutive members ofC. Including
an arc(i; j) in C has the effect of increasing the total path
length byc2ij .

Hence we are faced with the following problem : Mini-
mize the length ofPN under the constraint thatPN contains
no more thanM vertices. With the reconstruction method

applied here, this is a a modified version of the problem pre-
sented in [1].

3. SOLUTION METHOD

We now go on to show that the algorithm in [1] can be mod-
ified such that it handles second order reconstruction poly-
nomials and still preserves its computational complexity of
O(MN2).

To be able to extract samples fromS in an optimal way,
we need to know the contribution to reconstruction error
introduced by including any two samples as consecutive
members ofC. The aim now is therefore to fit a func-
tion fij to the data setf(n; y(n)) : n = i; :::; jg in such
a way that the reconstruction error is minimized. We wish
to use a second order polynomial in this context, that is we
let fij(n) = a0ij + a1ijn + a2ijn

2; n 2 [i; j]. If we inter-
polate between two end pointsi andj, we have for each arc
(i; j) :

c2ij =

j�1X
l=i+1

�
a0ij + a1ij l + a2ij l

2 � y(l)
�2

(1)

a0ij + a1iji+ a2ij i
2 = y(i) (2)

a0ij + a1ijj + a2ijj
2 = y(j) (3)

The optimal parametersa0ij ; a1ij anda2ij are found by
minimizing (1) under the constraints given in (2) and (3).
By inserting these optimal parameters into (1), the minimal
c2ij is found for each arc.

The graphG consists ofN(N�1)
2 arcs. The expression

for c2ij is a sum ofj�i+1 terms. Straightforward computa-
tion of alla0ij ’s, a1ij ’s, a2ij ’s and allc2ij ’s will thus result in
an algorithm with a complexity ofO(N3). Fortunately, this
can be avoided by careful computation of the arc lengths.

The arc lengths are given by (1). Assume that we ex-
press (1) in terms ofa2ij by the use of (2) and (3). By
taking the derivative of this expression with respect toa2ij
we arrive at an expression of the following form :

a2ij =

Pj�1
l=i+1(�0ij + �1ij l + �2ij l

2)y(l) + �1ij

�2ij
(4)

where

�1ij =

j�1X
l=i+1

�0ij + �1ij l + �2ij l
2 + �3ij l

3 (5)

�2ij =

j�1X
l=i+1

0ij + 1ij l + 2ij l
2 + 3ij l

3 + 4ij l
4 (6)



All �ij ’s, �ij ’s andij ’s are simple expressions ini, j, y(i)
andy(j) and hence all these coefficients are computed in
O(N2) time. The sums of powers ofl are evaluated by
closed form formulas, and hence all�1ij and�2ij are com-
puted inO(N2) time. By defining�pj =

Pj

l=1 l
py(l),

p = 0; 1; 2, we see that�p1; : : : ;�pN are computed in
O(N2) time. Next, we compute

a2ij =

P2
p=0 �pij(�p;j�1 ��pi) + �1ij

�2ij
(7)

1 < j < N , involvingO(N2) operations.
When the optimal parameters are computed in the way

described above, they are inserted into (1) in order to find
the minimum arc lengths. This will lead to an expression of
the form

c2ij =

j�1X
l=i+1

�
a20ij + 2a0ija1ij l +

�
2a0ija2ij + a21ij

�
l2+

2a1ija2ij l
3 + a22ij l

4 � 2y(l) (a0ij + a1ij l+

a2ij l
2
�
+ y2(l)

�

By applying the same technique as in computation ofa2ij ,
all arc lengths are available inO(N2) time.

When all arc lengths are available, the actual sample ex-
traction takes place. This is accomplished by a dynamic
programming algorithm thoroughly described in [1].

4. NUMERICAL EXPERIMENTS

In order to analyze the performance of the algorithm de-
scribed here, several ECG recordings taken from the MIT
[7] database were applied in the coding experiments. Two
of the test signals are presented in Figure 1.

As a measure of closeness between the original signal
and the coded signal thePercentage Root Mean Difference
is used. This is defined as

PRD =

vuut
PN

l=1[y(l)� ŷ(l)]2PN

l=1[y(l)� �y]2
� 100% (8)

wherey is the mean value of the original signaly, andŷ is
the reconstructed signal. As a measure of the data reduc-
tion obtained, theSample Reduction Ratiois used. This is
defined as

Number of samples in original signal

Number of retained samples
(9)

Figure 2 show the PRD recorded for the two test sig-
nals at different sample reduction ratios. The FAN algo-
rithm is outclassed by both versions of the CCSP algorithm
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Figure 1: Test signals: 1) Normal sinus rhythm (MIT100,
sample nr. 1 to 500) 2) Ventricular rhythm (MIT203, sam-
ple nr. 601 to 1100)

by a wide margin, especially at high sample reduction ra-
tios. The version of the CCSP algorithm based on polyno-
mial reconstruction have higher performance with respect
to PRD than does the one based on linear interpolation for
all sample reduction ratios considered in this case.

The gain of applying second order polynomial in recon-
struction of the signal may seem very high by looking at
Figure 2. However, the sample reduction ratios for the poly-
nomial reconstruction case is not in accordance with the ac-
tual number of parameters that are needed in order to recon-
struct each signal segment. This is due to the fact that in
order to describe a second order polynomial,threeparam-
eters are generally needed while only two are necessary in
the linear interpolation case.

As basis for reconstruction of the signal between two ex-
tracted samples we need one amplitude (the other is given as
the previous end point) and the distance from the previous
sample value, referred to asrun, in the linear reconstruction
case. In order to do second order polynomial reconstruc-
tion, we represent each polynomialfnk;nk+1 by the ampli-
tudey(nk), the run length,nk+1�nk, and the approximate

sample valuêy
�
nk+nk+1

2

�
. This data set determines the

piecewise polynomial reconstruction uniquely. This way we
get two amplitudes and one run as output from the compres-
sion algorithm in the polynomial case whereas the linear
case required only one sample value and one run as output
for each signal segment to be reconstructed.

In practice, entropy coding of the selected samples along
with the corresponding runs take place. This is part of our
future work with the existing algorithms. At this stage we
are concerned with the compression method, which seems
to have a high potential. However, it is clear that by ap-
plying entropy coding to the results it is possible to make a
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Figure 2: Sample reduction ration versus PRD for test
signal 1: mit100 and test signal 2: mit203

more justified comparison of the methods. Encoding of the
results will make it possible to evaluate a distortion mea-
sure as a function ofbit rate = average number of bits used
to represent one signal samplein the original signal. By do-
ing this we also have a basis of comparing the results from
the time-domain techniques to results from other types of
techniques, such as transform domain techniques.

The algorithm presented in [1] compresses the given
signal in an optimal way with respect to reconstruction er-
ror, given a bound on the number of signal samples to be
extracted. The polynomial interpolation case is based on
the same idea. The algorithm interpolates between two end
points, but the third point used to representfnk;nk+1 is ap-
proximated on basis of the optimal polynomial coefficients.
In a complete compression scheme, this approximated sig-
nal sample has to be quantized and this will cause the actual
distortion to differ from the optimal distortion with some
amount. In order to give a realistic picture, this approxi-
mated signal sample has been round off to the nearest inte-
ger in this context. In the case of test signal 1 with a sample
reduction ratio of 20, the deviation from the optimal dis-
tortion amounts to 0.78 % of the optimal distortion. For
the same compression ratio with test signal 2, the deviation
amounts to 0.14 %. The deviation grows larger for lower
sample reduction ratios, as more samples are retained and
thus we get a higher contribution to the total quantization
error. For test signal 1 with a sample reduction ratio of 10,
the deviation amounts to 1.68 % of the optimal distortion.

The complexity of the algorithm for polynomial inter-
polation is ofO(MN2) as in the linear case, but the execu-

tion time is a bit longer in the polynomial interpolation case.
This is probably due to the computations necessary to find
the optimal polynomial coefficients. In order to cope with
real time constraints, the techniques presented in [6] will be
applied in future enhancements of the method.

5. CONCLUSIONS

This paper demonstrates how the optimal time-domain coder
presented in [1] can be further developed in order to use sec-
ond order polynomials in reconstruction of the signal. This
is done without increase in the computational complexity of
the algorithm. Compared to the algorithm in [1] where lin-
ear interpolation is applied in reconstruction of the signal,
the algorithm presented here shows promising results. For
reasonable sample reduction ratios, the algorithm based on
polynomial interpolation gives significantly less reconstruc-
tion error than the one based on linear interpolation.

To be able to compare the algorithm developed here to
other methods regarding compression of ECG signals in a
fully justified way, the results have to be entropy coded.
This will be part of our future work along with other possi-
bilities of further development of the existing algorithms.
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