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ABSTRACT

This paper deals with a hybrid NN/HMM architecture for con-
tinuous speech recognition. We present a novel approach to set
up a neural linear or nonlinear feature transformation that is used
as a preprocessor on top of the HMM system’s RBF-network to
produce discriminative feature vectors that are well suited for be-
ing modeled by mixtures of Gaussian distributions. In order to
omit the computational cost of discriminative training of a con-
text-dependent system, we propose to train a discriminant neural
feature transformation on a system of low complexity and reuse
this transformation in the context-dependent system to output im-
proved feature vectors. The resulting hybrid system is an exten-
sion of a state-of-the-art continuous HMM system, and in fact, it is
the first hybrid system that really is capable of outperforming these
standard systems with respect to the recognition accuracy, without
the need for discriminative training of the entire system. In exper-
iments carried out on the Resource Management 1000-word con-
tinuous speech recognition task we achieved a relative error reduc-
tion of about 10% with a recognition system that, even before, was
among the best ever observed on this task.

1. INTRODUCTION

Standard state-of-the-art speech recognition systems utilize Hid-
den Markov Models (HMMs) to model the acoustic behavior of
basic speech units like phones or words. Most commonly the
probabilistic distribution functions (pdfs) are modeled as mixtures
of Gaussian distributions. These mixture distributions can be re-
garded as output nodes of a Radial-Basis-Function (RBF) network
that is embedded in the HMM system [4]. Contrary to neural
training procedures the parameters of the HMM system, includ-
ing the RBF network, are usually estimated to maximize the like-
lihood of the training observations. In order to combine the time-
warping abilities of HMMs and the more discriminative power of
neural networks, several hybrid approaches arose during the past
five years, that combine HMM systems and neural networks. The
best known approach is the one proposed in [2] and [3]. It re-
places the HMMs’ RBF-net with a Multi-Layer-Perceptron (MLP)
which is trained to output each HMM state’s posterior probabil-
ity. Another hybrid approach was presented by our group in [6, 7].
By combining a discrete HMM speech recognition system and a
neural quantizer and maximizing the mutual information between
the VQ-labels and the assigned phoneme-classes, this approach
outperforms standard discrete recognition systems. We showed
that this approach is capable of building up very accurate systems
with an extremely fast likelihood computation, that only consists of
a quantization and a table lookup. Unfortunately though, the men-
tioned hybrid systems yet failed to substantially outperform very
good continuous systems with respect to the recognition accuracy.
And in addition to that, it is well known, that weak discrimination
in likelihood based approaches can be improved by discriminative
training objectives, like MCE or MMI. This discriminative train-

ing, however, is computationally extremely expensive. Especially
when a context-dependent acoustic modeling is being used with
thousands of HMMs and pdfs.

2. HYBRID CONTINUOUS HMM/MLP APPROACH

Therefore we followed a different approach, namely the extension
of a state-of-the-art continuous system, that achieves an extremely
good recognition performance, with a neural net that is trained with
MMI-methods related to those in [9]. This architecture was re-
ported on in [10]. The parameters of the HMM system, i. e. the
RBF-part of this architecture, are trained efficiently with the EM-
algorithm maximizing the likelihood of the acoustic observations.
In a discriminative training procedure, only the parameters of the
additional neural component are adjusted. This way, the additional
network component transforms the speech features in order to in-
crease discrimination at the output nodes of the RBF-net. This dis-
criminative training is performed on a system of low complexity
(monophones) to keep the computational costs reasonably small.

2.1. ARCHITECTURE
The basic architecture of the hybrid system is illustrated in Figure
1. The neural net functions as a feature transformation that takes
several additional adjacent feature vectors into account to produce
an improved discriminant feature vector that is fed into the HMM
system.
This architecture allows (at least) three ways of interpretation; 1. as
a hybrid system that combines neural nets and continuous HMMs,
2. as an LDA-like transformation that incorporates the HMM para-
meters into the calculation of the transformation matrix and 3. as
feature extraction method, that allows the extraction of features ac-
cording to the underlying HMM system with an incorporation of
adjacent frames. The considered types of neural networks are lin-
ear transformations, MLPs and recurrent MLPs. A detailed de-
scription of the possible topologies is given in Section 3.
With this architecture, additionalpast and future feature vectors can
be taken into account in the probability estimation process without
increasing the dimensionality of the Gaussianmixture components.
Instead of increasing the HMM system’s number of parameters the
neural net is utilized to produce more discriminant feature vectors
with respect to the trained HMM system. Of course, adding some
kind of neural net increases the number of parameters too, but the
increase is much more moderate than it would be when increasing
each Gaussian’s dimensionality. And, as the major reason for train-
ing a neural transformation instead of the HMM system’s paramet-
ers, we want to reuse the trained net from a low complexity system
for providing features for a system of higher complexity.

2.2. TRAINING OBJECTIVE
In our experiments the neural net is trained to improve the frame-
based discrimination among the pdfs, i. e. to maximize the mu-
tual information between the acoustical features and the system’s
output at the output nodes of the RBF-net. Certainly, other ap-
proaches for discriminative training could be applied as well, like



those presented in [9, 5, 8].
The MMI criterion is usually formulated in the following way:
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This means that following the MMI criterion the system’s free
parameters � have to be estimated to maximize the quotient
of the observation’s likelihood p�(XjW ) for the known tran-
scription W and its overall likelihood p�(X). With X =
(x(1); x(2); :::x(T )) denoting the training observations and W =
(w(1); w(2); :::w(T )) denoting the HMM states - assigned to the
observation vectors in a Viterbi-alignment - the frame-based MMI
criterion becomes
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where S is the total number of HMM states, (w1; :::wS) denotes
the HMM states and P (wk) denotes each states’ prior-probability
that is estimated on the alignment of the training data or by an ana-
lysis of the language model.
Eqn. (2) can be used to re-estimate the Gaussians of a continuous
HMM system directly. In [9] we reported the slight improvements
in recognition accuracy that we achievedwith this parameter estim-
ation. However, it turned out, that only the incorporation of addi-
tional past and future features in the probability calculation pipeline
can provide more discriminative emission probabilities and a major
advance in recognition accuracy. The proposed neural net offers an
ideal way to incorporate additional feature frames without increas-
ing each Gaussian’s dimensionality.

2.3. TRAINING PROCEDURE
For the parameter estimation according to Eqn. (2) we chose a
gradient descent procedure. At first, for matter of simplicity, we
will consider a linear network that takes P past feature vectors and
F future feature vectors as additional input. With N denoting the
number of extracted features per frame, the linear net denoted as a
(P + F + 1) � N matrix NET , each component x0(t)[c] (c =
1:::N ) of the network output x0(t) computes to

x
0(t)[c] =

P+FX
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NX
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x(t�P+i)[j]�NET [i�N+j][c]8c = 1:::N

(3)
so that the derivative with respect to a component of NET easily
computes to

@x0(t)[c]

@NET [i �N + j][ĉ]
= �c;ĉx(t� P + i)[j] (4)

In a continuous HMM system with diagonal covariance matrices
the pdf of each HMM state w is modeled by a mixture of Gaussian

components like
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A pdf’s derivative with respect to a component x0[c] of the net’s
output becomes
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With x(t) in Eqn. (2) now replaced by the net outputx0(t) the par-
tial derivative of Eqn. (2) with respect to a probabilistic distribution
function p(x0(i)jwk) computes to
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Thus, using the chain rule the derivative of the net’s parameters
with respect to the frame-based MMI criterion can be computed as
displayed in Eqn. (8)
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2.4. ADVANTAGES OF THE PROPOSED APPROACH

When using a linear network, the proposed approach strongly re-
sembles the well known LinearDiscriminant Analysis (LDA) [1] in
architecture and training objective. The main difference is the way
the transformation is set up. In the proposed approach the trans-
formation is computed by taking directly the HMM parameters into
accountwhereas the LDA only tries to separate the features accord-
ing to some class assignment. With the incorporation of a trained
continuous HMM system the net’s parameters are estimated to pro-
duce feature vectors that not only have a good separability in gen-
eral, but also have a distribution that can be modeled with mixtures
of Gaussians very well. Our experiments given at the end of this
paper prove this advantage. Furthermore, contrary to LDA, that
produces feature vectors that don’t have much in common with the
original vectors, the proposed approach only slightly modifies the
input vectors. Thus, a well trained continuous system can be exten-
ded by the MMI-net approach, in order to improve its recognition
performance without the need for completely rebuilding it. In ad-
dition to that, the approach offers a fairly easy extension to nonlin-
ear networks (MLP) and recurrent networks (recurrent MLP). This
will be outlined in the following section. And, maybe as the major
advantage, the approach allows keeping up the division of the in-
put features into streams of features that are strongly uncorrelated
and which are modeled with separate pdfs. The case of multiple
streams is discussed in detail in Section 4. Besides, the MMI ap-
proach offers the possibility of a unified training of the HMM sys-
tem and the feature extraction network or an iterative procedure of
training each part alternately.



Gaussian
components

p(x(t)|w )1 p(x(t)|w )2 p(x(t)|w )3
w2w1 w3

Hidden Markov Model
context-dependent

RBF-
networkx’(t)

x(t)x(t-1) x(t+1)

L1

L2

1

BIAS

z
-1

transformed features

(multiple frames)
original features

hidden layer

MLP
(recurrent)

Figure 1. Hybrid system with a nonlinear (recurrent) feature
transformation

3. NETWORK TOPOLOGIES

Section 2 explained how to train a linear transformation with re-
spect to the frame-based MMI criterion. However, to exploit all the
advantages of the proposed hybrid approach the network should be
able to perform a nonlinear mapping, in order to produce features
whose distribution is (closer to) a mixture of Gaussians although
the original distribution is not.

3.1. MLP
When using a fully connected MLP as displayed in Figure 1 with
one hidden layer of H nodes, that perform the nonlinear function
f , the activation of one of the output nodes x0(t)[c] becomes

x
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which is easily differentiable with respect to the nonlinear net-
work’s parameters. In our experiments we chose f to be defined as
the hyperbolic tangents f(x) := tanh(x) = (2(1 + e�x)�1 � 1)
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and the gradient can be assembled according to Eqn. (8).

3.2. RECURRENT MLP
With the incorporation of several additional past feature vectors
as explained in Section 2, more discriminant feature vectors can
be generated. However, this method is not capable of modeling
longer term relations, as it can be achieved by extending the net-
work with some recurrent connections. For the sake of simplicity,
in our experiments we simply extended the MLP as indicated with
the dashed lines in Figure 1 by propagating the output x(t) back to
the input of the network (with a delay of one discrete time step).
This type of recurrent neural net is often referred to as a ’Jordan’-
network. Certainly, the extension of the network with additional
hidden nodes in order to model the feedback more independently
would be possible as well.

4. MULTI STREAM SYSTEMS

In HMM-based recognition systems the extracted features are often
divided into streams that are modeled independently. This is useful
the less correlated the divided features are. In this case the overall
likelihood of an observation computes to

p�(xjw) =

MY
s=1

ps�(xjw)
ws (11)

where each of the stream pdfs ps�(xjw) only uses a subset of the
features in x. The stream weights ws are usually set to unity.
A multi stream system can be improved by a neural extraction for
each stream and an independent training of these neural networks.
However, it has to be considered that the subdivided features usu-
ally are not totally independent and by considering multiple input
frames as illustrated in Figure 1 this dependence often increases.
It is a common practice, for instance, to model the features’ first
and second order delta coefficients in independent streams. So,
for sure the streams lose independence when considering multiple
frames, as these coefficients are calculated using the additional
frames. Nevertheless, we found it to give best results to maintain
this subdivision into streams, but to consider the stronger correla-
tion by training each stream’s net dependenton the other nets’ out-
puts. A training criterion follows straight from Eqn. (11) inserted
in Eqn. (2).
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The derivative of this equation with respect to the pdf pŝ�(xjw) of
a specific stream ŝ depends on the other streams’ pdfs. With thews

set to unity it is
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Neglecting the correlation among the streams the training of each
stream’s net can be done independently. However, the more the
incorporation of additional features increases the streams’ correla-
tion, the more important it gets to train the nets in a unified training
procedure according to Eqn. (13).



base- Jordan
line LDA linear MLP Net

monoph
1 strm 24% 21% 21% 21% 21%
monoph
4 strms 11.8% 11.0% 10.9% 10.8% 10,9%
triph
4 strms 5.2% 5.3% 4.8% 4.7% 4.7%

Table 1. Word error rates achieved in the experiments on the
RM database

5. EXPERIMENTS AND RESULTS

We applied the proposed approach to improve a
context-independent (monophones) and a context-dependent (tri-
phones) continuous speech recognition system for the 1000-word
Resource Management (RM) task. The systems used linear HMMs
of three emitting states each. The tying of Gaussian mixture com-
ponents was performed with an adaptive procedure according to
[11]. The HMM states of the word-internal triphone system were
clustered in a tree-based phonetic clustering procedure. Decoding
was performed with a Viterbi-decoder and the standard wordpair-
grammar of perplexity 60. The gradient descent training was per-
formed with the RPROP algorithm on the monophonemulti-stream
system. For training the weights of the recurrent connections we
chose real-time recurrent learning. The average error rates were
computed using the test-sets Feb89, Oct89, Feb91 and Sep92.
The table above shows the recognition results with single stream
systems in its first row. These systems simply use a 12-value Cep-
strum feature vector without the incorporation of delta coefficients.
The first column displays the results on the baselinecontinuous sys-
tems. Columns 3-5 show the results for these systems extended
into hybrid systems with the same HMM parameters but additional
neural networks on top of the HMMs. For comparison, Column
2 shows the results if the baseline HMM system is retrained with
acoustic features derived in a LDA with the same input and out-
put dimensions. The systems with an input transformation use one
additional past and one additional future feature vector as input.
The proposed approach achieves the same performance as the LDA
with the same input and output dimensions, but it is not capable of
outperforming it.
The secondrow lists the recognition results with four stream mono-
phone systems that use the first and second order delta coefficients
in additional streams plus log energy and this values’ delta coef-
ficients in a forth stream. The MLP system trained according to
Eqn. (11) with 36 hidden nodes slightly outperforms the other ap-
proaches. The incorporation of recurrent network connectionsdoes
not improve the system’s performance.
The third row lists the recognition results of four stream systems
with a context-dependentacoustic modeling (triphones) that makes
use of the neural networks and the LDA taken from the monophone
four stream system of row two. The Estimation of the HMM para-
meters of these systems was simply performed to maximize the ob-
servation likelihood using the EM-algorithm. On the one hand, this
was done to avoid the computational complexity that MMI train-
ing objectives cause on context-dependent systems. On the other
hand, this demonstrates that the feature vectors produced by the
trained networks have a good discrimination for continuous sys-
tems in general. Again, the MLP system outperforms the other ap-
proaches and achieves a very remarkable word error rate. With a
recognition rate of 4.7% as average of all four test-sets the system
is one of the best ever reported, although it does not make use of
cross-word acoustic modeling and is not trained discriminatively.

6. CONCLUSION

The paper has presented a novel approach to discriminant feature
extraction. A MLP network has successfully been used to com-
pute a feature transformation that outputs extremely suitable fea-
tures for continuous HMM systems. The experimental results have
proven that the proposed approach is an appropriate method for in-
cluding several feature frames in the probability estimation pro-
cess without increasing the dimensionality of the Gaussian mix-
ture components in the HMM system. Furthermore did the res-
ults on the triphone speech recognition system prove that the ap-
proach provides discriminant features, not only for the system that
the mapping is computed on, but for HMM systems with a continu-
ous modeling in general. The application of recurrent networks did
not improve the recognition accuracy. The longer range relations
seem to be very weak and they seem to be covered well by using the
neighboring feature vectors and first and second order delta coef-
ficients. The proposed unified training procedure for multiple nets
in multi-stream systems allows keeping up the subdivision of fea-
tures of weak correlations and gave us best profits in recognition
accuracy.
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