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ABSTRACT

In this paper we present the methods we developed to estim-
ate posterior probabilities for HMM states in continuous and dis-
crete HMM-based speech recognition systems and several waysto
speed up decoding by using these posterior probability estimates.
The proposed pruning techniques are State Deactivation Pruning
(SDP), similar to an approach proposed for hybrid recognition sys-
tems, and a novel posteriori-based lookahead technique, Posteri-
ori Lookahead Pruning (PLP), that evaluates future posteriors in
order to exclude unlikely HMM states as early as possible during
search. By applying the proposed methods we managed to vastly
reduce the decoding time consumed by our time-synchronous Vi-
terbi-decoder for recognition systems based on the Verbmobil and
the Wall Street Journal database with hardly any additional search
error.

1. INTRODUCTION

With the introduction of long-span language models, very large
vocabularies and context-dependent acoustic models, the problem
of an efficient search for the most probable sentence for a spoken
utterance became increasingly important. Several techniques be-
came state-of-the-art like the usage of a tree lexicon, tree copies,
language model lookahead and others. The integration of these
techniques in our time-synchronous Viterbi-decoder, gave us the
expected remarkable speed-ups [5]. Additionally, we developed
some novel pruning techniques, based on the estimation of pos-
terior probability estimatesthat we will report about in this paper.
Posterior probabilities were first exploited for pruning by Renals
et a. [7] in the NOWAY stack-decoder for decoding with hybrid
recognition systems. Contrary to standard continuousHMM sys-
tems that are based on the estimation of probabilistic distribution
functionsfor the observations' likelihoods, hybrid recognition sys-
tems utilize neural networks to estimate the HMM states’ probab-
ility given an acoustic observation as input [1]. These posterior
probabilities are discriminative by nature as they sum up to unity
over all HMM states. For this reason, Phone Deactivation Prun-
ing proved to be avery effective method for speeding up decoding
with this type of system architecture. Phone Deactivation Pruning
simply limits the possibleHMMsfor aspecific observationto those
whose posterior probability does exceed a certain threshold. The
possibility of applying this pruning technique is often referred to
as one of the mgjor advantagesof these NN/HMM hybrids.
Standard HMM systems are based on the estimation of the obser-
vations' likelihood functionsp(x|w) for eachHMM statew, with x
denoting an arbitrary feature vector extracted from the acoustic ob-
servation. However, the Bayes' Formula can be applied to derive
local posterior state probabilities from the probabilistic distribution
functions (pdfs) according to

p(X|w) P(w)
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This requires the two additional probability estimates P(w) and
p(X). P(w), the state w’s prior probability, can be estimated eas-
ily on the training data, just like it is done in hybrid systems for
transforming posterior probability estimates into likelihood estim-
ates. The efficient estimation of the observation’s prior p(x) will
be discussed in the following sections for several types of HMM
systems.

2. ESTIMATING POSTERIOR PROBABILITIESIN
CONTINUOUSHMM SYSTEMS

In continuous HMM systems the pdfs are modeled as weighted
sums of multi-variat basic distribution functions, usually Gaussi-
ansor Laplacians[3].
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In the equation above w denotesthe HMM state, d,, ; arew’smix-
ture weights and C,, resemblesthe number of basic functions used
inthe pdf of statew. g.,; arethebasic functions. For matter of sim-
plicity we will use the term Gaussian in the further text, knowing
that all that will be stated also holds true for other types of basic
functions. For the estimation of p(x) in general, two methods are
possible:

On the one hand, a separate pdf can be trained on all the training
datato model the general distribution of the acoustic observations.
In order to achieve a good resolution, usually a large number of
mixture componentsis needed, so that the estimation of p(x) with
this independent modeling is computationally not cheap.

On the other hand, p(x) can be estimated as the sum over all the
HMM states' likelihood functionsweighted by the states’ priorsac-
cording to

p() = Y P(w)p(X|w) ©)

Unfortunately though, this computation requires the evaluation of
all states' pdfswhichiscomputationally very expensive. Thus, the
estimation of p(x) with this formula does not seem to be worth it.
In continuoussystems, however, this estimation of p(x) canbesim-
plified according to

p(X) & Y P(w)p(xlw) =3 (P(w) Z dgw,gm(x))
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where C denotes the total number of Gaussian mixture compon-

ents. Hence, p(X) estimated according to Eqgn. (3) turnsout to bea
weighted sum of the pdfs’ mixture components, too.

P(w)dgwj)gj (x) = ZDJ -g5(x) (4)



21. CHMM

In classical continuoussystemsthat do not make useof any mixture
tying, the number C of mixture componentsis usually very large
and the evaluation of Eqn. (3) according to Eqn. (4) is too expens-
ive. In this case the proposed training of a separate pdf for model-
ing p(x) is more adequate. However, if somekind of mixture tying
isused, Eqgn. (4) simplifiesdrastically and its evaluation can be ac-
complished with lower computational cost.

22. SCHMM

Semi-continuousHMM systemsoffer the ideal structure for estim-
ating the observations' priors according to Egn. (4). In SCHMM
systems[4] all pdfs share acommon " codebook” of Gaussiandis-
tributions. In this case, the equation simplifiesto

IESY (Z P(w)dgw,)gi(x) ®)
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with areasonably small number C of mixture components. Hence,
p(X) turns out to be another weighted sum of the Gaussian code-
book. Its evaluationis as cheap asthe evaluation of asingle condi-
tional likelihood p(x|w).

2.3. GENERALIZED MIXTURE TYING

Besides the classical CHMM and SCHMM systems several more
generalized types of tying of mixture components have been pro-
posed[2, 8]. They aimto find theideal tradeoff between therobust-
nessof SCHMM systemsand the resolution of CHMM systems. In
general, they have more Gaussian componentsthan SCHMM sys-
tems. Most commonly, however, the number is small enough, so
that the estimation of p(x) as a weighted sum of all the system’s
mixture components according to Eqgn. (4) is usually worth the
computation. Nevertheless, the more mixture components there
are and the less tied the whole system is, the more useful gets an
independent modeling of p(x) as proposed for CHMM systems.

3. ESTIMATING POSTERIOR PROBABILITIESIN
DISCRETE HMM SYSTEMS

Discrete HMM systemsmap the (continuous) feature vector x onto
discrete labelsm with somekind of vector quantizationm:(x). The
pdfs are modeled by discrete probabilities according to

p(X|w) o< p(m(X)|w) (6)
and the prior likelihood p(x) can be estimated as

p() & Y P(w)p(X|w) oc > Pw)p(m(x)|w) = p(m(x))

(7)
and turns out to be just another discrete distribution on the labels
m. Thus, the estimation of posterior probabilities according to

p(m(X)]w) P(w)
p(m(x)) ®

can be implemented as a mere table lookup. This way, the es-
timation of posterior probabilitiesin discrete HMM systemsis ex-
tremely cheap.

4. ESTIMATING POSTERIOR PROBABILITIESIN
SYSTEMSOF MULTIPLE STREAMS

Itisacommon practicein HMM-based speechrecognitionto group
the extracted featuresinto streams that are modeled independently.
Thisis the more useful the less correlated the divided features are.
When having multiple feature streamsthe total likelihood of an ob-
servation z computesto

P(w]X) =

M
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with the stream weights w. usually set to unity. The multi-stream
prior distribution p(x) can be modeled as

p) =] (Z P(w)psk(xm)) s (10)
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With this prior distribution the posterior probability estimates can
be set up according to Eqn. (1). Nevertheless, it is possibleto use
only a subset of the streams for estimating posteriors. The advant-
age is aless expensive computation. Or it is possible to use each
stream’s posterior probability estimate independently for pruning.
We made some experiments using stream specific estimates, the
results of which can be found in Section 7.

5. STATE DEACTIVATION PRUNING

In the previous sections we showed, that it is possible to gain pos-
terior probability estimatesin likelihood-basedHMM systemswith
only little computation, too. These estimatescan be used similar to
the way they were exploited in [7], with aglobal threshold that is
used to prune those states w for an observation x whose posterior
probability estimate falls below.

p(X|w) P(w)
p(X)

Experimental Resultswill be presented in Section 7.

However, we found it to be even more useful to have individual
thresholds for each HMM state. These thresholds thresh,, can be
easily computed as the minimum posteriors on the training data.
Experiments with individual thresholds are displayed in Section 7
aswell.

P(w|x) = < thresh = prunestatew  (11)

p(X|w)P(w)
p(x)
Another advantage of these individual thresholdsis that the priors

P(w) can be omitted in the calculation, and thresholdsthresh’ can
be set up for only the quotient p(x|w)/p(x).

P(w|x) = < thresh,, = prunestatew (12)

p(X|w) _ thresh, _ p(X|w) ,
00 < Plw) = 00 < thresh’,, (13)

Phone Deactivation Pruning was first proposed and evaluated for
hybrid systems by Renalsin [7]. Using a fixed threshold for the
frame-based HMM posteriors, speed-upsby an order of magnitude
were reported for the NOWAY stack-decoder. In our Viterbi-
decoder, we integrated the posteriori estimation and the posteriori
pruning at the state level. Therefore, it isreferred to as State Deac-
tivation Pruning. However, we believe, that the two approachesdo
not differ much in computational effort as well asin the effect on
decoding speed.

6. POSTERIORI LOOKAHEAD PRUNING

Figure 1 showsthe posterior probability estimates (normalized by
dividing with P(w)) of thefour HMMs /th/,/ae/,/t/ and /s/ in
an utterance of the words " That's” extracted from an utterance of
the WSJO corpus. It is obvious that the posterior probability es-
timates reach their maximum values at the phones' centers while
close to the phonetical borders the discrimination among the pos-
terior probability estimates is only weak. This correspondsto our
observationthat usually State Deactivation Pruning cannot prevent
an HMM node from being expanded at all, but only comesinto ef-
fect after several frames have passed, during which the posterior
probability did not drop below the threshold.

Ney et al. [6] developed a likelihood-based lookahead technique,
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Figure 1. Normalized posterior probability estimates and
alignment of the phonesin an utterance” That's’
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Figure2. Looking ahead into the probable phone center

that evaluates several future frames with simplified acoustic mod-
elswhenever apossibleHMM start occurs. This procedureis com-
putationally quite expensiveand the discrimination amongthe like-
lihoods is often very weak. Furthermore is it usually not pos-
sible to reuse the computations made for the phonetical |lookahead
when evaluating the accurate acoustic models. Based on the pro-
posed methodsfor estimating posterior probabilities, we devel oped
anovel lookahead technique that is considerably simpler:

At any possible start of a new HMM h, the decoder looks ahead
in time for an HMM-specific number of frames, in order to check
the posterior probability for theframe that is most likely to beclose
to the specificHMM'’s center. Oncethe HMM's posterior probabil -
ity at thispoint turnsout to fall below acertain lookahead threshold
lahy, thewholeHMM is pruned. Thismeansthat the HMM A must
not start at the actual frame. Again, the thresholds can be computed
on the training data. In our recognition systemsthat use HMMs of
three emitting states each, the HMM posterior probability is estim-
ated by its second state. Figure 2 illustrates this procedure. The
start of HMM £ is omitted if the HMM's posterior probability at

half the av. duration

t 4+ n falls below the HMM-specific lookahead threshold lahy, .
P(h|ziyn) < lah, = forbid start of HMM h attimet (14)

n resembles the average duration of h’sfirst state plus half the av-
erage duration of the second. Thus, it is the average duration to the
center of the second state in the standard linear three-state HMM
system that we use. With adifferent HMM topology, different for-
mulas for estimating the average duration to the HMM’s center
have to be applied.

7. IMPLEMENTATIONAL REMARKS

In additionto the phone models, common recognition systemsusea
dedicated model for silenceand aword boundary model. Our Verb-
mobil system additionally usesan HMM that models several types
of noise. The duration of such non-phoneme models has an ex-
tremely large variation. Therefore, wefound that Posteriori L ooka-
head Pruning is inadequate for these models. In the State Deactiv-
ation Pruning, however, those models can be included without re-
strictions.

As stated before, the estimation of thresholds for State Deactiva-
tion Pruning as well as for the Posteriori Lookahead Pruning can
be performed on the training data. For our experimentswe simply
computed the minimum posterior probabilitiesfor eachHMM state
on a Viterbi-alignment and used them as thresholds for State De-
activation Pruning. The lookahead thresholds were computed as
each HMM'’s minimum posterior probability at the specific dis-
tance from its beginning.

8. EXPERIMENTSAND RESULTS

We evaluated the proposed pruning techniques using our Viterbi-
decoder that was first presented in [5]. It performs a time-
synchronousbeam search in a network of partial tree copiesin or-
der to incorporate N-gram language modelsinto the search. Within
the tree copies language model smearing [6] is performed in order
to apply the language model as early as possible during search.
Both recognition systems, that we eval uated the pruning techniques
on, use an ordinary semi-continuous acoustic modeling with 200
Gaussian mixture distributions in each of four streams. The ex-
tracted featuresare 12 Cepstrum coefficients, first and second order
delta coefficients of these values, and log energy with delta coeffi-
cients. The experimentswere run on a DEC a pha366 MHz work-
station.

The German spontaneous speech recognition system was trained
on parts of the Verbmobil speech database. The test-set that was
used consistsof 265 sentences. It isthetest-set from the Verbmobil
evaluation of 1995. Using this system, we only conducted a few
preliminary experiments. Thebest results are summarizedin Table
1. Thepruning thresholdswere set asexplainedin the previous sec-
tion. The time displayed in the table is the time consumed for de-
coding all sentenceswith a beam width set to the minimum value
that causesno additional searcherror. Using State Deactivationand
Posteriori Lookahead Pruning, we achieved areduction of thetime
consumed for decoding by an order of magnitude with hardly any
decreasein recognition accuracy.

The evaluation of the proposed pruning techniqueson a recogni-
tion system for the WSJO 5000-words task are displayed in more
detail. The tests were performed using the Nov. 92 test-set of
330 sentences and the 5k bigram language model of perplexity
110. Table2 liststhe evaluation of State Deactivation Pruning with
fixed andindividual thresholdsaccordingto Egn. (11) and (13) with
a global posterior probability estimation for all streams. Again,
the individual thresholds were estimated as the minimum posteri-
ors on the training data. The first row (thresh = 0.0) displays
the decoding time and recognition accuracy of the baseline system
without any posteriori-based pruning. It turned out that the indi-
vidual thresholds, estimated as minimum posteriors on the training
data, have to be slightly increased for best performance. Thisis
probably due to some extreme outliers among the WSJO training



System word error [%] | time[100s]
baseline 28,78 140
State Deacti-

vation Pruning 28,80 102
SDP& PLP 28,66 74

Table 1. Experimentswith a German spontaneous speech re-
cognition system

correct- | word
threshold ness[%] | error [%)] | time[100s]
00 90.68 10.76 220
e~ 10 90.58 10.84 162
5 88.70 15.02 128
e~ 85.04 18.42 82
min 90.82 10.64 240
gleg(mn)+1.0 90.80 10.68 155
gleglmn)+2.0 90.73 10.82 144
ehog(min)+3.0 90.32 11.47 135
ehog(min)+4.0 89.91 1211 123
ehog(min)+5.0 89.01 13.22 113

Table 2. SDP with global and individual thresholds

data. This observation differs from the experiments with the Ger-
man recognition system wherethe use of these mere minimum pos-
teriors as thresholds improved the decoding speed.

The slight increasing of the thresholds was performed by adding
fixed values in the log-domain as displayed in rows 6 to 10 of
Table 2, where min denotes the minimum posteriors estimated on
the training data. Table 3 displays the results measured using in-
dividual posterior estimates and thresholds for several of the fea-
ture streams. In this table the increasing of the thresholds in the
log-domain is indicated by + and the additional value. The result
in the forth row that only has 1% of additional word error with a
remarkable speed-up in decoding might be the best result we ob-
tained without Posteriori Lookahead on the WSJ system. The ex-
periments with this novel lookahead technique are listed in Table
4. Here, it is probably the 10. and the 13. row that are most inter-
esting. Row 13 shows an additional error of about 1% consuming
about half thetime for decoding. In Row 10 an additional decoding
error of less than 2% was measured with a decoding time of about
40% of the baseline system. For all the improvements in decod-
ing time, it hasto be taken into account that the contribution of the
likelihood computation procedurein the overall decodingtimeisat
about 30% when applying no posteriori-based pruning and that it is
even higher when the pruning techniques are applied. Therefore,

thresh- correct- | word

hold streams || ness[%] | error [%] | time[100s]
min 1 90.38 11.13 161
min 12 90.27 11.32 150
min 12,3 90.26 11.55 143
min 1234 90.20 11.77 129
+1.0 1 90.20 11,77 119
+1.0 12 88.46 14,40 101
+1.0 12,3 86.65 17.43 91
+1.0 1234 84.91 20.09 77

Table 3. Stream-wise State Deactivation Pruning

correct- | word
thresh | lah streams || ness[%] | error [%] | t[100s]
min min global 90.82 10.64 256
min +5.0 | global 90.50 11.13 206
min +8.0 | global 90.01 11.80 170
min +10.0 | globa 89.66 12.41 147
min +12.0 | global 88.36 14.43 129
min +15.0 | global 84.81 19.63 102
+2.0 min global 90.73 10.82 171
+2.0 +5.0 | global 90.44 11.19 135
+2.0 +8.0 | globa 89.88 11.94 111
+2.0 +10.0 | global 89.46 12.63 89
+2.0 +12.0 | globa 88.20 14.62 76
+2.0 +15.0 | global 84.46 19.92 68
+1.0 +10 |1 90.11 11.70 107
+1.0 +10 | 1.2 88.38 14.48 93
+1.0 +1.0 | 1,23 86.90 17.68 82
+1.0 +1.0 | 1,234 84.58 20.35 70

Table 4. Experimentswith Posteriori L ookahead

the measured gain in the total time consumed for decoding has to
berated as an even bigger improvement in the mere search process.

9. CONCLUSION

The paper has shown that estimates of the posterior state prob-
abilities can effectively be computed and utilized for an efficient
search in continuous HMM-based recognition systems. State De-
activation Pruning proved to vastly speed up the decoding pro-
cedure with ordinary time-synchronous Viterbi-decoders. In addi-
tion to that, a novel lookahead technique has been proposed that
proved to be capable of providing another remarkable speed-up.
With the proposed pruning techniques we were able to double the
speed of a German spontaneous speech recognition system with
hardly any additional error. On the WSJ system the same speed-
up comes along with an additional error of 1%. Thisslight gap is
most probably due to badly set thresholds. Some more work will
haveto be spent on the estimation of useful state-dependent posteri-
ori thresholds. Several smoothing and clustering techniques could
beapplied in order to get better thresholdsfor sparsely represented
HMM states and to gain resistance to extreme outliers among the
posterior probability estimates on the training data.
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