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ABSTRACT

In this paper we present the methods we developed to estim-
ate posterior probabilities for HMM states in continuous and dis-
crete HMM-based speech recognition systems and several ways to
speed up decoding by using these posterior probability estimates.
The proposed pruning techniques are State Deactivation Pruning
(SDP), similar to an approach proposed for hybrid recognition sys-
tems, and a novel posteriori-based lookahead technique, Posteri-
ori Lookahead Pruning (PLP), that evaluates future posteriors in
order to exclude unlikely HMM states as early as possible during
search. By applying the proposed methods we managed to vastly
reduce the decoding time consumed by our time-synchronous Vi-
terbi-decoder for recognition systems based on the Verbmobil and
the Wall Street Journal database with hardly any additional search
error.

1. INTRODUCTION

With the introduction of long-span language models, very large
vocabularies and context-dependent acoustic models, the problem
of an efficient search for the most probable sentence for a spoken
utterance became increasingly important. Several techniques be-
came state-of-the-art like the usage of a tree lexicon, tree copies,
language model lookahead and others. The integration of these
techniques in our time-synchronous Viterbi-decoder, gave us the
expected remarkable speed-ups [5]. Additionally, we developed
some novel pruning techniques, based on the estimation of pos-
terior probability estimates that we will report about in this paper.
Posterior probabilities were first exploited for pruning by Renals
et al. [7] in the NOWAY stack-decoder for decoding with hybrid
recognition systems. Contrary to standard continuous HMM sys-
tems that are based on the estimation of probabilistic distribution
functions for the observations’ likelihoods, hybrid recognition sys-
tems utilize neural networks to estimate the HMM states’ probab-
ility given an acoustic observation as input [1]. These posterior
probabilities are discriminative by nature as they sum up to unity
over all HMM states. For this reason, Phone Deactivation Prun-
ing proved to be a very effective method for speeding up decoding
with this type of system architecture. Phone Deactivation Pruning
simply limits the possible HMMs for a specific observation to those
whose posterior probability does exceed a certain threshold. The
possibility of applying this pruning technique is often referred to
as one of the major advantages of these NN/HMM hybrids.
Standard HMM systems are based on the estimation of the obser-
vations’ likelihood functions p(xjw) for each HMM statew, with x
denoting an arbitrary feature vector extracted from the acoustic ob-
servation. However, the Bayes’ Formula can be applied to derive
local posterior state probabilities from the probabilistic distribution
functions (pdfs) according to

P (wjx) =
p(xjw)P (w)

p(x)
(1)

This requires the two additional probability estimates P (w) and
p(x). P (w), the state w’s prior probability, can be estimated eas-
ily on the training data, just like it is done in hybrid systems for
transforming posterior probability estimates into likelihood estim-
ates. The efficient estimation of the observation’s prior p(x) will
be discussed in the following sections for several types of HMM
systems.

2. ESTIMATING POSTERIOR PROBABILITIES IN
CONTINUOUS HMM SYSTEMS

In continuous HMM systems the pdfs are modeled as weighted
sums of multi-variat basic distribution functions, usually Gaussi-
ans or Laplacians [3].

p(xjw) :=
CwX
i=1

dgwi � gwi(x) (2)

In the equation abovew denotes the HMM state, dgwi arew’s mix-
ture weights andCw resembles the number of basic functions used
in the pdf of statew. gwi are the basic functions. For matter of sim-
plicity we will use the term Gaussian in the further text, knowing
that all that will be stated also holds true for other types of basic
functions. For the estimation of p(x) in general, two methods are
possible:
On the one hand, a separate pdf can be trained on all the training
data to model the general distribution of the acoustic observations.
In order to achieve a good resolution, usually a large number of
mixture components is needed, so that the estimation of p(x) with
this independent modeling is computationally not cheap.
On the other hand, p(x) can be estimated as the sum over all the
HMM states’ likelihood functions weighted by the states’ priors ac-
cording to

p(x) �
X
w

P (w)p(xjw) (3)

Unfortunately though, this computation requires the evaluation of
all states’ pdfs which is computationally very expensive. Thus, the
estimation of p(x) with this formula does not seem to be worth it.
In continuoussystems, however, this estimation ofp(x) can be sim-
plified according to

p(x) �
X
w

P (w)p(xjw) =
X
w

�
P (w)

CwX
i=1

dgwigwi(x)

�

=

CX
j=1

� X
all w tied to gj

P (w)dgwj

�
gj(x) =

CX
j=1

Dj �gj(x) (4)

where C denotes the total number of Gaussian mixture compon-
ents. Hence, p(x) estimated according to Eqn. (3) turns out to be a
weighted sum of the pdfs’ mixture components, too.



2.1. CHMM
In classical continuous systems that do not make use of any mixture
tying, the number C of mixture components is usually very large
and the evaluation of Eqn. (3) according to Eqn. (4) is too expens-
ive. In this case the proposed training of a separate pdf for model-
ing p(x) is more adequate. However, if some kind of mixture tying
is used, Eqn. (4) simplifies drastically and its evaluation can be ac-
complished with lower computational cost.

2.2. SCHMM
Semi-continuous HMM systems offer the ideal structure for estim-
ating the observations’ priors according to Eqn. (4). In SCHMM
systems [4] all pdfs share a common ”codebook” of Gaussian dis-
tributions. In this case, the equation simplifies to

p(x) �
CX
i=1

�X
all w

P (w)dgwi

�
gi(x) (5)

with a reasonably small number C of mixture components. Hence,
p(x) turns out to be another weighted sum of the Gaussian code-
book. Its evaluation is as cheap as the evaluation of a single condi-
tional likelihood p(xjw).

2.3. GENERALIZED MIXTURE TYING
Besides the classical CHMM and SCHMM systems several more
generalized types of tying of mixture components have been pro-
posed [2, 8]. They aim to find the ideal tradeoff between the robust-
ness of SCHMM systems and the resolution of CHMM systems. In
general, they have more Gaussian components than SCHMM sys-
tems. Most commonly, however, the number is small enough, so
that the estimation of p(x) as a weighted sum of all the system’s
mixture components according to Eqn. (4) is usually worth the
computation. Nevertheless, the more mixture components there
are and the less tied the whole system is, the more useful gets an
independent modeling of p(x) as proposed for CHMM systems.

3. ESTIMATING POSTERIOR PROBABILITIES IN
DISCRETE HMM SYSTEMS

Discrete HMM systems map the (continuous) feature vector x onto
discrete labelsm with some kind of vector quantizationm(x). The
pdfs are modeled by discrete probabilities according to

p(xjw) / p(m(x)jw) (6)

and the prior likelihood p(x) can be estimated as

p(x) �
X
w

P (w)p(xjw) /
X
w

P (w)p(m(x)jw)� p(m(x))

(7)
and turns out to be just another discrete distribution on the labels
m. Thus, the estimation of posterior probabilities according to

P (wjx) �
p(m(x)jw)P (w)

p(m(x))
(8)

can be implemented as a mere table lookup. This way, the es-
timation of posterior probabilities in discrete HMM systems is ex-
tremely cheap.

4. ESTIMATING POSTERIOR PROBABILITIES IN
SYSTEMS OF MULTIPLE STREAMS

It is a common practice in HMM-based speechrecognition to group
the extracted features into streams that are modeled independently.
This is the more useful the less correlated the divided features are.
When having multiple feature streams the total likelihood of an ob-
servation x computes to

p�(xjw) :=
MY
s=1

ps�(xjw)
ws (9)

with the stream weights ws usually set to unity. The multi-stream
prior distribution p(x) can be modeled as

p�(x) �
MY
s=1

�X
w

P (w)ps�(xjw)

�ws
(10)

With this prior distribution the posterior probability estimates can
be set up according to Eqn. (1). Nevertheless, it is possible to use
only a subset of the streams for estimating posteriors. The advant-
age is a less expensive computation. Or it is possible to use each
stream’s posterior probability estimate independently for pruning.
We made some experiments using stream specific estimates, the
results of which can be found in Section 7.

5. STATE DEACTIVATION PRUNING

In the previous sections we showed, that it is possible to gain pos-
terior probability estimates in likelihood-basedHMM systems with
only little computation, too. These estimates can be used similar to
the way they were exploited in [7], with a global threshold that is
used to prune those states w for an observation x whose posterior
probability estimate falls below.

P (wjx) =
p(xjw)P (w)

p(x)
< thresh ) prune state w (11)

Experimental Results will be presented in Section 7.
However, we found it to be even more useful to have individual
thresholds for each HMM state. These thresholds threshw can be
easily computed as the minimum posteriors on the training data.
Experiments with individual thresholds are displayed in Section 7
as well.

P (wjx) =
p(xjw)P (w)

p(x)
< threshw ) prune state w (12)

Another advantage of these individual thresholds is that the priors
P (w) can be omitted in the calculation, and thresholds thresh0 can
be set up for only the quotient p(xjw)=p(x).

p(xjw)
p(x)

<
threshw
P (w)

)
p(xjw)
p(x)

< thresh’w (13)

Phone Deactivation Pruning was first proposed and evaluated for
hybrid systems by Renals in [7]. Using a fixed threshold for the
frame-based HMM posteriors, speed-ups by an order of magnitude
were reported for the NOWAY stack-decoder. In our Viterbi-
decoder, we integrated the posteriori estimation and the posteriori
pruning at the state level. Therefore, it is referred to as State Deac-
tivation Pruning. However, we believe, that the two approaches do
not differ much in computational effort as well as in the effect on
decoding speed.

6. POSTERIORI LOOKAHEAD PRUNING

Figure 1 shows the posterior probability estimates (normalized by
dividing with P (w)) of the four HMMs =th=,=ae=,=t= and =s= in
an utterance of the words ”That’s” extracted from an utterance of
the WSJ0 corpus. It is obvious that the posterior probability es-
timates reach their maximum values at the phones’ centers while
close to the phonetical borders the discrimination among the pos-
terior probability estimates is only weak. This corresponds to our
observation that usually State Deactivation Pruning cannot prevent
an HMM node from being expanded at all, but only comes into ef-
fect after several frames have passed, during which the posterior
probability did not drop below the threshold.
Ney et al. [6] developed a likelihood-based lookahead technique,
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Figure 1. Normalized posterior probability estimates and
alignment of the phones in an utterance ”That’s”
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Figure 2. Looking ahead into the probable phone center

that evaluates several future frames with simplified acoustic mod-
els whenever a possible HMM start occurs. This procedure is com-
putationally quite expensive and the discrimination among the like-
lihoods is often very weak. Furthermore is it usually not pos-
sible to reuse the computations made for the phonetical lookahead
when evaluating the accurate acoustic models. Based on the pro-
posed methods for estimating posterior probabilities, we developed
a novel lookahead technique that is considerably simpler:
At any possible start of a new HMM h, the decoder looks ahead
in time for an HMM-specific number of frames, in order to check
the posterior probability for the frame that is most likely to be close
to the specific HMM’s center. Once the HMM’s posterior probabil-
ity at this point turns out to fall below a certain lookahead threshold
lahh, the whole HMM is pruned. This means that the HMM hmust
not start at the actual frame. Again, the thresholds can be computed
on the training data. In our recognition systems that use HMMs of
three emitting states each, the HMM posterior probability is estim-
ated by its second state. Figure 2 illustrates this procedure. The
start of HMM h is omitted if the HMM’s posterior probability at

t+ n falls below the HMM-specific lookahead threshold lahh.

P (hjxt+n) < lahh ) forbid start of HMM h at time t (14)

n resembles the average duration of h’s first state plus half the av-
erage duration of the second. Thus, it is the average duration to the
center of the second state in the standard linear three-state HMM
system that we use. With a different HMM topology, different for-
mulas for estimating the average duration to the HMM’s center
have to be applied.

7. IMPLEMENTATIONAL REMARKS

In addition to the phone models, common recognition systemsuse a
dedicated model for silence and a word boundary model. Our Verb-
mobil system additionally uses an HMM that models several types
of noise. The duration of such non-phoneme models has an ex-
tremely large variation. Therefore, we found that Posteriori Looka-
head Pruning is inadequate for these models. In the State Deactiv-
ation Pruning, however, those models can be included without re-
strictions.
As stated before, the estimation of thresholds for State Deactiva-
tion Pruning as well as for the Posteriori Lookahead Pruning can
be performed on the training data. For our experiments we simply
computed the minimum posterior probabilities for each HMM state
on a Viterbi-alignment and used them as thresholds for State De-
activation Pruning. The lookahead thresholds were computed as
each HMM’s minimum posterior probability at the specific dis-
tance from its beginning.

8. EXPERIMENTS AND RESULTS

We evaluated the proposed pruning techniques using our Viterbi-
decoder that was first presented in [5]. It performs a time-
synchronous beam search in a network of partial tree copies in or-
der to incorporate N-gram language models into the search. Within
the tree copies language model smearing [6] is performed in order
to apply the language model as early as possible during search.
Both recognition systems, that we evaluated the pruning techniques
on, use an ordinary semi-continuous acoustic modeling with 200
Gaussian mixture distributions in each of four streams. The ex-
tracted features are 12 Cepstrum coefficients, first and second order
delta coefficients of these values, and log energy with delta coeffi-
cients. The experiments were run on a DEC alpha 366 MHz work-
station.
The German spontaneous speech recognition system was trained
on parts of the Verbmobil speech database. The test-set that was
used consists of 265 sentences. It is the test-set from the Verbmobil
evaluation of 1995. Using this system, we only conducted a few
preliminary experiments. The best results are summarized in Table
1. The pruning thresholds were set as explained in the previous sec-
tion. The time displayed in the table is the time consumed for de-
coding all sentences with a beam width set to the minimum value
that causesno additional search error. Using State Deactivation and
Posteriori Lookahead Pruning, we achieved a reduction of the time
consumed for decoding by an order of magnitude with hardly any
decrease in recognition accuracy.
The evaluation of the proposed pruning techniques on a recogni-

tion system for the WSJ0 5000-words task are displayed in more
detail. The tests were performed using the Nov. 92 test-set of
330 sentences and the 5k bigram language model of perplexity
110. Table 2 lists the evaluation of State Deactivation Pruning with
fixed and individual thresholds according to Eqn. (11) and (13) with
a global posterior probability estimation for all streams. Again,
the individual thresholds were estimated as the minimum posteri-
ors on the training data. The first row (thresh = 0:0) displays
the decoding time and recognition accuracy of the baseline system
without any posteriori-based pruning. It turned out that the indi-
vidual thresholds, estimated as minimum posteriors on the training
data, have to be slightly increased for best performance. This is
probably due to some extreme outliers among the WSJ0 training



System word error [%] time [100s]

baseline 28,78 140
State Deacti-
vation Pruning 28,80 102

SDP & PLP 28,66 74

Table 1. Experiments with a German spontaneous speech re-
cognition system

correct- word
threshold ness [%] error [%] time [100s]
0.0 90.68 10.76 220
e�10 90.58 10.84 162
e�5 88.70 15.02 128
e�3 85.04 18.42 82
min 90.82 10.64 240
elog(min)+1:0 90.80 10.68 155
elog(min)+2:0 90.73 10.82 144
elog(min)+3:0 90.32 11.47 135
elog(min)+4:0 89.91 12.11 123
elog(min)+5:0 89.01 13.22 113

Table 2. SDP with global and individual thresholds

data. This observation differs from the experiments with the Ger-
man recognition system where the use of these mere minimum pos-
teriors as thresholds improved the decoding speed.
The slight increasing of the thresholds was performed by adding
fixed values in the log-domain as displayed in rows 6 to 10 of
Table 2, where min denotes the minimum posteriors estimated on
the training data. Table 3 displays the results measured using in-
dividual posterior estimates and thresholds for several of the fea-
ture streams. In this table the increasing of the thresholds in the
log-domain is indicated by + and the additional value. The result
in the forth row that only has 1% of additional word error with a
remarkable speed-up in decoding might be the best result we ob-
tained without Posteriori Lookahead on the WSJ system. The ex-
periments with this novel lookahead technique are listed in Table
4. Here, it is probably the 10. and the 13. row that are most inter-
esting. Row 13 shows an additional error of about 1% consuming
about half the time for decoding. In Row 10 an additional decoding
error of less than 2% was measured with a decoding time of about
40% of the baseline system. For all the improvements in decod-
ing time, it has to be taken into account that the contribution of the
likelihood computation procedure in the overall decoding time is at
about 30% when applying no posteriori-based pruning and that it is
even higher when the pruning techniques are applied. Therefore,

thresh- correct- word
hold streams ness [%] error [%] time [100s]
min 1 90.38 11.13 161
min 1,2 90.27 11.32 150
min 1,2,3 90.26 11.55 143
min 1,2,3,4 90.20 11.77 129
+1.0 1 90.20 11,77 119
+1.0 1,2 88.46 14,40 101
+1.0 1,2,3 86.65 17.43 91
+1.0 1,2,3,4 84.91 20.09 77

Table 3. Stream-wise State Deactivation Pruning

correct- word
thresh lah streams ness [%] error [%] t [100s]
min min global 90.82 10.64 256
min +5.0 global 90.50 11.13 206
min +8.0 global 90.01 11.80 170
min +10.0 global 89.66 12.41 147
min +12.0 global 88.36 14.43 129
min +15.0 global 84.81 19.63 102
+2.0 min global 90.73 10.82 171
+2.0 +5.0 global 90.44 11.19 135
+2.0 +8.0 global 89.88 11.94 111
+2.0 +10.0 global 89.46 12.63 89
+2.0 +12.0 global 88.20 14.62 76
+2.0 +15.0 global 84.46 19.92 68
+1.0 +1.0 1 90.11 11.70 107
+1.0 +1.0 1,2 88.38 14.48 93
+1.0 +1.0 1,2,3 86.90 17.68 82
+1.0 +1.0 1,2,3,4 84.58 20.35 70

Table 4. Experiments with Posteriori Lookahead

the measured gain in the total time consumed for decoding has to
be rated as an even bigger improvement in the mere search process.

9. CONCLUSION

The paper has shown that estimates of the posterior state prob-
abilities can effectively be computed and utilized for an efficient
search in continuous HMM-based recognition systems. State De-
activation Pruning proved to vastly speed up the decoding pro-
cedure with ordinary time-synchronous Viterbi-decoders. In addi-
tion to that, a novel lookahead technique has been proposed that
proved to be capable of providing another remarkable speed-up.
With the proposed pruning techniques we were able to double the
speed of a German spontaneous speech recognition system with
hardly any additional error. On the WSJ system the same speed-
up comes along with an additional error of 1%. This slight gap is
most probably due to badly set thresholds. Some more work will
have to be spenton the estimation of useful state-dependentposteri-
ori thresholds. Several smoothing and clustering techniques could
be applied in order to get better thresholds for sparsely represented
HMM states and to gain resistance to extreme outliers among the
posterior probability estimates on the training data.
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