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ABSTRACT

A technique for designing frames to use with vector selection al-
gorithms, for example Matching Pursuits (MP), is presented. The
design algorithm is iterative and requires a training set of signal
vectors. An MP algorithm chooses frame vectors to approximate
each training vector. Each vector in the frame is then adjusted by
using the residuals for the training vectors which used that par-
ticular frame vector in their expansion. The frame design algo-
rithm is applied to speech and electrocardiogram (ECG) signals,
and the designed frames are tested on signals outside the training
sets. Experiments demonstrate that the approximation capabilities,
in terms of mean square error (MSE), of the optimized frames are
significantly better than those found using frames designed by ad-
hoc techniques. Experiments show typical reduction in MSE by
20 � 50%.

1. INTRODUCTION

The goal in traditional transform coding is to represent as much
signal information with as few transform coefficients as possible
using an orthogonal basis. The optimal transform for a signal de-
pends on the statistics of the stochastic process that produced the
signal. If the process is Gaussian it is well known that the optimal
transform is given by the eigenvectors of the autocorrelation ma-
trix of the stochastic process and it is called the Karhunen-Loève
Transform (KLT). If the process is not Gaussian this need not be
true, and it is a nontrivial task to find the optimal transform even
if the statistics are known [1]. In addition to these difficulties the
signal is often non-stationary, and no fixed transform will be op-
timal in all signal regions. One way to overcome this problem is
to use an overcomplete, or redundant, set of vectors. For a finite
dimensional space, any finite overcomplete set of vectors which
span the space form a frame [2].

The basic idea when using a frame instead of an orthogonal trans-
form is that we have more vectors and thus a better chance of find-
ing a small number of vectors that match the signal vector well. If
a frame contains many vectors, and only one vector is used when
approximating each signal vector, it will be equivalent to shape-
gain vector quantizer. Typically the frame contains a smaller num-
ber of vectors, and more than one frame vector can be used when
approximating a signal vector. Since the frame may contain lin-
early dependent vectors, an expansion is no longer unique. In a
compression scheme the goal is to use as few vectors as possible
to obtain a good approximation of each signal vector. To find the

optimal expansion it is necessary to try all possible combinations.
If M vectors are to be used in an approximation of a signal vector,
and K is the number of vectors in the frame,
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possible approximations exists, and finding the best requires exten-
sive calculation. Orthogonal Matching Pursuit (OMP) and Match-
ing Pursuit (MP) are greedy algorithms that are suboptimal, but
require far less computations. In this paper we have used OMP.

Goyal and Vetterli have worked with frames or overcomplete ex-
pansions [3, 4, 2], using different frames, like vectors on the N-
dimensional spheres that maximize the minimum Euclidean norm,
or corners of the hypercube[� 1p

N
; 1p

N
]N . Goodwin [5] have

some arguments for using a particular, ad-hoc based frame. Berg
and Mikhael use a frame that contains both the DCT (Discrete Co-
sine Transform) and the Haar transform for compression of speech
signals [6] and images [7]. To the authors’ knowledge, no work
exists on designing frames for a particular class of signals, but
several papers have raised the question [3, 2]. Designing frames
using a training set of signal vectors is the topic of this paper.

2. FRAMES AND OMP

A family of functionsf'kgk2K in a Hilbert spaceH, whereK is
a countable index set, is called aframeif there exist anA > 0 and
aB <1, such that for allx in H:

Akxk2 �
X
k

jh'k; xij
2 � Bkxk2: (2)

A andB are calledframe bounds. LetF denote anN �K matrix
whose columns,ffjg , j = 0; 1; : : : ; K � 1, constitute a frame.
Let xi be a real signal vector,xi 2 RN . xi can be approximated
as

~xi =

K�1X
j=0

wi(j)fj ; (3)

wherewi(j) is the approximation coefficient corresponding to vec-
tor fj . The corresponding error energy is:

krik
2 = kxi � ~xik
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wherek � k denotes the Euclidean norm inRN . For a set ofM
signal vectors, the mean square error (MSE) can be calculated:

MSE =
1

NM
�
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i=0

krik
2
: (5)

We need to select the frame vectors to be used for approximating
a given signal vectorx. Orthogonal Matching Pursuit (OMP) is a
greedy algorithm for choosing vectors from a frame or dictionary
[8]. At each step the OMP selects the vector with the greatest con-
tribution to the gradient of the error energy. In OMP a new vector
is calculated as the part of the frame vector that is orthogonal to the
vectors that are already chosen, and the corresponding coefficient
is calculated for the new vector using the inner product between
the new vector and the residual vector.

The Matching Pursuit (MP) algorithm differs from OMP by not
finding an orthogonalized new vector, but simply using the se-
lected frame vector as it is and leting the coefficient be the inner
product between the selected vector and the residual, thus the OMP
gives a better approximation. We use OMP as the vector selection
algorithm in this paper, but the design scheme can also be used
with MP or other selection algorithms.

3. AN ALGORITHM FOR FRAME DESIGN

The iterative algorithm used to design frames is inspired by the
Generalized Lloyd algorithm (GLA) [9]. The GLA requires that
each new frame performs better, in terms of MSE, than the previ-
ous one using the existing classification. In this context classifi-
cation includes which frame vectors used in approximating a sig-
nal vectorand the associated coefficients. GLA also requires the
frame to perform better after a re-classification, i.e., finding new
approximation vectors and coefficients using the new frame. Then
the new frame will always be better, or as good as the previous
one, and the algorithm at least guarantees a local optimum. There
are two problems in using GLA in the context of overcomplete set
of vectors. Only one frame vector can be adjusted in each iteration
in order to guarantee the new frame to be better using the existing
classification, and the selection algorithms used (MP algorithms)
are suboptimal. This means that we can not guarantee improve-
ment when re-classifying after an iteration, even if only one vector
is adjusted. There is no guarantee for the frame after an iteration
to be better than the previous frame. Thus the algorithm presented
here is not a GLA, but it is an iterative algorithm similar to GLA.

The main steps in the algorithm are as follows:

1. Begin with an initial frameF0, i = 0.

2. Approximate each training vector according to Equation 3
using a vector selection algorithm. Find the residuals.

3. Given the classifications and residuals, adjust the frame vec-
tors) Fi.

4. Find the new approximations, i.e., re-classify, and calculate
the new residuals. If not (stop-criterion = TRUE)) i =
i+ 1, go to step 3.

The frame performance is improved by modifying each frame vec-
tor according to the residuals from the training vectors that used
the actual frame vector in their approximations. Consider a scheme

where two frame vectors are selected for approximating each train-
ing vector, i.e.:

~xi = wi(1)fi1 + wi(2)fi2 (6)

ri = xi � ~xi; (7)

wherexi is a training vector,~xi its approximation andri the resid-
ual ofxi. Frame vectorj is adjusted as

~fj = fj + �
X
k2Tj

rk; (8)

whereTj is the set of all training vectors that usedfj in their ex-
pansions. If only one of the frame vectors is adjusted, the new
residual for a training vector using this frame vector is

r
0
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wherewi(ji) is the coefficient corresponding to the adjusted vec-
tor, fj , for the approximation of training vectorxi before the ad-
justment offj . The total residual of all the training vectors using
the frame vector that has been adjusted is:
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whereK is the sum of all the coefficient used with frame vector
fj , before the adjustment:

K =
X
l2Tj

wl(jl): (11)

The residuals for the rest of the training vectors are not influenced
by adjustment of the frame vector. From Equation 10 it is seen that
if k
P

i
r
0
ik � k

P
i
rik, then

0 � �K � 2: (12)

This means that:
sign(�) = sign(K): (13)

Thus for each frame vector in each iteration sign(�) is set accord-
ing to Equation 13. If we had used an optimal selection algorithm
and adjusted only one vector in each iteration, and then found new
approximations and residuals before proceeding with adjusting the
next frame vector, the new frame would always be better than the
previous, with respect to MSE. Selection algorithms for frames are
not optimal, so there is no way to guarantee a better frame when
using a practical selection algorithm. In addition, to make the iter-
ations faster we adjustall the frame vectors in each iteration, and
we normalize the frame vectors to unit length when making a new
frame. The proposed algorithm can not guarantee the new frame
to be better than the previous, but the results shown in the next
section prove that this scheme works well and produces frames
that are optimized for a given class of input data. In summary, the
algorithm used in this paper work as follows:



1. Begin with an initial frameF0, i = 0.

2. OMP is used to find an approximation for each training vec-
tor, and all the residuals are calculated.

3. All frame vectors are adjusted according to Equation 8 with
sign(�) according to Equation 13. The frame vectors are
then normalized to unit length) Fi.

4. OMP is used to find the new approximations and residuals.
If not (stop-criterion = TRUE)) i = i + 1, go to step 3,
Else terminate.

Suggested stop-criteria can be: Maximum number of iterations,
almost constant MSE, or that the MSE has been growing for some
iterations. Due to the lack of guarantee for the new frame to be
better than the previous, the stop-criterion cannot be the normal
stop-criterion for GLA i.e., stop if the change in the MSE from last
iteration is small enough. The algorithm should allow the MSE to
grow for several iterations without terminating the training. This
can be seen from training results in the next section.

4. OPTIMIZING FRAMES FOR ECG SIGNALS AND
SPEECH SIGNALS

The frame design algorithm is applied to ECG signals and speech
signals. In the following experiments a block size ofN of 16 is
used. Constructing a frame by using segments of a typical signal
was shown in [10] to work quite well. In [2] the possibility of
adapting the frame by augmenting it with samples from the source
is mentioned, but not tried. When using ECG signals as the train-
ing set our initial frame is almost the same as the frame used in [10]
and it is constructed ad-hoc. DCT vectors were used, in addition
to vectors constructed using typical QRS complexes (heartbeats in
a normal sinus rhythm). The frame used here consists of 16 DCT
vectors and 44 vectors constructed from a typical ECG signal (nor-
mal sinus rhythm). In [6] encouraging results are obtained using a
frame with DCT and Haar vectors for speech signals. This frame is
used as initial frame in our experiments with speech signals. With
the chosen block size, 32 frame vectors result.

When designing a frame the number of frame vectors used to ap-
proximate a training vector is held constant. A frame is then op-
timized to be used with that number of vectors in each approxi-
mation. When using a frame to approximate a signal, some signal
parts may require more frame vectors in the approximation than
others, if the approximation quality is to be constant. This is not
a problem because several frames can be designed, one for select-
ing just one vector, one for selecting two, etc. In a compression
scheme all the frames can be used when representing a signal with-
out any extra side information since the number of symbols before
an end of block (EOB) symbol will indicate which frame to use in
each reconstruction.

In Figure 1 training plots are shown for speech and ECG sig-
nals. The ECG signals used are signals from the MIT arrhythmia
database [11]. The records are represented with 12 bit per sample,
and the sampling frequency is 360 Hz. The ECG signal used for
training is MIT100, 0:00 to 5:00 minutes, and the variance of the
signal is1:2 � 103. The speech signals used are recorded at 16 kHz
in a room without echo, and downsampled to 8 kHz. 8.75 seconds
of speech data is used for training, and the variance of the signal is
1:8 � 106. In the experiments with speech signals, using 1, 2, and 3
frame vectors in each approximation,j�j = 10�6 (Figure 1 a),b),

and c)). When experimenting with ECG signals, using 1, 2, and 3
frame vectors in each approximation,j�j = 10�5 (Figure 1 e), f),
and g)). When using 4 vectors in each approximations, for speech
signalsj�j = 2 �10�7 (Figure 1 d)), for ECG signalsj�j = 2 �10�6

(Figure 1 h)).
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Figure 1: MSE is plotted as a function of training iterations a), b),
c), and d) speech signal where 1,2,3, and 4 frame vectors are used
in each approximation. e), f), g), and h) ECG signal where 1,2,3,
and 4 frame vectors are used in each approximation.

The frames optimized for ECG signals are tested on MIT100, 5:30
to 10:30 minutes, and MIT113, 0:00 to 0:30 minutes. The frames
optimized for speech signals are tested on 8.75 seconds of speech
recorded under the same conditions as the speech used for training.
The optimized frames used for testing are the frames providing the
lowest value for MSE during training. In Figure 2 the results using
the optimized frames and the initial frames are shown.

5. DISCUSSION AND CONCLUSION

The results demonstrate great potential for optimizing frames for
a given class of input data. The comparison in Figure 2 shows
that the improvement using the optimized frames, with respect to
MSE, is significant. For the experiment with speech signal the re-
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Figure 2: MSE is plotted as a function of different numbers of
vectors in an approximation. Test signal is used. a) speech sig-
nal, solid: initial frame, dotted: optimized frames b) ECG signal,
MIT100, solid: initial frame, dotted: optimized frames, c) ECG
signal, MIT113, solid: initial frame, dotted: optimized frames

duction in MSE using the optimized frame compared to the initial
frame when using 1,2, 3, and 4 vectors in the approximation are
35.8%, 50.2%, 46.8%, and 32.7%. For the ECG experiments the
improvement is largest when using MIT100 as test signal. This is
not surprising since the MIT100 test data is data from the same
patient as the training set. The MIT113 test signal is also a sinus
rhythm, but for another patient. The good results when using few
frame vectors in each approximation indicate that this technique
will perform well at low bit-rates.

Our experiments demonstrate a gain improvement which is de-
creasing with the number of vectors used in each approximation.
This is intuitively right since when using many vectors in each ap-
proximation it is possible to get a good approximation with a lot
of different frames.

In the training experiments different�’s had to be used. The differ-
ence in� for the speech signal experiments compared to the ECG
signal experiments is probably due to the large difference in the
variances of the training signals. Our experiments also indicate

that a smaller� has to be used when using more vectors in each
approximation. This may be caused by Equation 12. When more
vectors are used in each approximation the variance ofK becomes
larger. This can cause� to be out of range for some frame vectors
in some iterations, thus a smaller� may be needed for conver-
gence.

Future work will address the following issues: Convergence, how
much the choice of an initial frame influences the design result,
and the use of optimized frames in a complete compression scheme
for investigating the rate-distortion performance.
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