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ABSTRACT
In this paper we present a new adaptation technique for our
hybrid large vocabulary continuous speech recognition system.
In most adaptation approaches the HMM parameters are
reestimated. In our approach, however, we train a speaker
independent continuous speech recognizer, then we keep the
HMM parameters fixed and we train a second network, which
transforms the features of the adaptation data to fit the HMM
parameters. Thus, less parameters have to be estimated, and
therefore this approach performs well even for a small number
of adaptation data. With this approach we achieve relative
improvements in recognition rates on the Wall Street Journal
(WSJ) task of 16.5%.

1. INTRODUCTION

Over the last years we developed a high performance speech
recognition system based on a new hybrid approach [5][6].
Recently [7] we could show that the performance of our hybrid
connectionist/HMM speaker independent continuous speech
recognition systems is very close to the performance of
standard continuous HMM systems for the Wall Street Journal
database (WSJ0). The WSJ is a large vocabulary speech
recognition task for read speech. In this paper we will describe
how to extend our approach in order to perform very effective
speaker adaptation using novel ideas based on information
theory algorithms, which fit well to the basic principle of our
hybrid approach. We will do this without changing any HMM
parameters in opposite to the common adaptation techniques
like MAP and MLLR [2]. We perform some kind of feature
transformation to adapt the new speaker to the speaker
independent system. The reason for this is, that in speaker
independent systems a large amount of parameters is estimated.
These parameters would have to be reestimated with a
relatively small amount of adaptation data, if we would adapt
the HMM parameters. In our approach we will only estimate a
relatively small amount of approximately 2800 weights.

2. SYSTEM DESCRIPTION

2.1 BASELINE SYSTEM

The baseline system we use is a system similar to the one
presented in [7], which consists basically of a neural vector
quantizer (VQ) and discrete HMMs. The VQ is a single layer
neural network with the Euclidean activation function:
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The NN (Figure 1) is trained with the information theory based
maximum mutual information (MMI) paradigm described in
[5][6]. This paradigm maximizes the mutual information
I(Y,W)=H(W)-H(W|Y) between the sequence of the firing
neurons ym and the corresponding phonetic description wi

which is derived from the transcriptions or an alignment. H(W)
is not affected by the neural network, thus only
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has to be minimized to maximize I(Y,W). The probabilities
P(wi,ym) are estimated using the firing sequence of the network.
The NN is a "winner takes all" network i.e. the output of the
network is the number of the neuron with the lowest activation
(distance to corresponding prototype). After presenting the full
training set to the network, we can compute the probabilities
from a matrix in which we count the observations of neuron m
firing, when a phoneme wi was seen on the input layer.
To train the neural networks with a gradient based method we
have to calculate the derivative of ∂ ∂H W Y g( | ) / . Therefore
during the training procedure the output is smoothed with a

softmax function ( )
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softmax it is now possible to calculate the derivative of
∂ ∂H W Y g( | ) /  which can be written as:
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Figure 1: Basic structure of the neural network VQ
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The system is partitioned into four streams. Each of the four
streams is trained separately. The first stream consist of 12
Mel-scaled cepstral features which are computed every 10 ms.
A hamming window with a size of 25 ms is applied for each
frame. The second and third stream are the first and second
order derivatives of the cepstral features. The last stream is
computed from the power in each frame plus first and second
order derivatives. For a better context dependency of the neural
network three adjacent frames are used as input vector for each
network. This results in an input size of 36 for the first three
streams (networks) and an input size of 9 for the fourth
network. The complete structure of the network is shown in
Figure 2. The output size for all networks was equally chosen
to 300. This size leads to a number of 27900 neural weights.
The output of each of the four networks is a single integer
representing the index of the nearest prototype. All outputs are
calculated for each frame. The output of the network is the
input of a discrete HMM system. The HMMs are context
dependent (cross word triphones) which are state clustered to
approximately 6000 states. This results in a total number of 7.2
million HMM parameters. Because of the large number of
HMM parameters smoothing techniques are applied [1][8]. The
system is gender independent , i.e. there is only one set of
HMMs for both genders.

Recognition is performed in two steps. In the first step the
bigram language model is used. The result of this first
recognition is a lattice, which is then rescored in the second
step with the trigram language model. For the 5k speaker
independent task (si-84) the error rate for this system is 5.7%
[7].

2.2 ADAPTATION SYSTEM

As outlined in the previous sections, our large vocabulary
speech recognition system differs substantially from standard
systems, concerning its architecture as well as the basic
theoretical framework it relies on. We have been able to exploit
these facts in order to develop new principles for speaker
adaptation which make extensive use of these special
conditions and are presented here for the first time. Therefore,
in compliance with our basic approach using MMI neural
networks as neural vector quantizers in a discrete HMM
system, these new speaker adaptation techniques are based on
information theory algorithms and make use of the fact that it is
possible to represent our discrete system structure as one large
neural network trainable with gradient descent methods.

The latter fact is exploited in our adaptation scheme by
extending the MMI neural networks by an additional layer with

a scalar product activation function, as outlined in Figure 3.
Our goal is then to train this additional layer in order to
transform the speaker dependent adaptation data to match the
distribution obtained from the original speaker independent
training. For this purpose, we apply a novel information theory-
based training scheme to the weights of the additional layer,
while the weights of the original MMI neural network are
frozen and therefore remain unchanged. In this way it is
possible to model the speaker characteristics using only a
relatively small number of parameters and to adapt the new
speakers’ data to the existing Markov models which remain
unchanged during this procedure, rather than adapting the
numerous Markov model parameters to the new speaker data.
This is only possible because our hybrid system makes use of
trainable vector quantizers implemented in form of the MMI
neural networks.  Therefore, if we can adapt such a vector
quantizer to produce the same neural firing as in the original
speaker independent case for a new speaker, the speaker
independent probabilities of the underlying HMMs are still
valid for this new VQ and can be retained. This leads to a
dramatic reduction of the parameters that have to be adapted,
which now consist only of the 2800 weights of the four input
networks, compared to the large amount of about 7.2 million
HMM parameters of the hybrid system.

While it is obvious that such a procedure is only feasible due to

Figure 3: New network topology for speaker adaptation
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Figure 2: Context dependent connectionist vector quantizer with four features
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the hybrid architecture of our speech recognition system, it is
furthermore also possible to show that in addition also the MMI
training criterion of our hybrid approach can be exploited in a
very elegant and constructive manner to positively contribute to
our new approach to speaker adaptation. For this purpose, one
has to recall Jensens inequality, which is one of the most
important relationships used in information theory-based
parameter estimation techniques, such as ML or MMI
approaches. This inequality states that the expectation value of
a logarithmic probability distribution logf(y) is always
maximum if f(y) represents the true distribution f*(y) used for
computing the expectation value. This can be expressed as:

* * *( ) log ( ) ( ) log ( )f y f y dy f y f y dy
Y Y
∫ ⋅ ≥ ∫ ⋅         (4)

This inequality is also valid if we assume that the function f is a
conditional probability function of the form  f p w y= ( | ) . In
this case, the expectation value of a conditional logarithmic
distribution can be computed as:

E p w y p w y p wy dwdy
YW

{log ( | )} ( , ) log ( | )= ⋅∫∫ (5)

Thus, Equation (4) can be also expressed as

 * * *( , ) log ( | ) ( , ) log ( | )p w y p w y dy p w y p w y dy
YW YW
∫∫ ⋅ ≥ ∫∫ ⋅ (6)

This can be exploited for speaker adaptation in the following
way: Our MMI neural training approach in [5][6][7] is capable
of training the weights of a neural network in order to produce
neural firing probabilities that minimize the entropy H(W|Y) by
using gradient descent techniques. If in the training criterion in
Equation (2) we use for the non-logarithmic probabilities -
which are used for computing the expectation value - some pre-
computed probabilities p* and for the logarithmic probabilities
produced by the neural net the probabilities p, then the neural
training procedure will try to do its best to maximize the
expression

max{ ( , ) log ( | )}*p w y p w y
YW

⋅∑∑ (7)

However, according to (6), this can be only achieved if the
probabilities p converge to the probabilities p*. Therefore, by
forcing the neural net to maximize the training criterion in
Equation (7), it will automatically train the weights so that the
resulting neural net probabilities p converge as close as
possible to the probabilities p*. As mentioned earlier, our goal
in speaker adaptation was to train the extended neural network
for the new speaker so that it produces the same neural firing
distributions as in the original speaker independent case.
Therefore, for performing speaker adaptation in our hybrid
system, we proceed as follows:

1) The speaker-independent training of the HMMs and the
neural networks is carried out. This has to be done only once,
and the system is now able to recognize speech in speaker-
independent mode. The neural firing probabilities obtained
from speaker-independent training of our neural vector
quantizer are stored. We call these probabilities p*(y|w).

2) The weights of the neural vector quantizer are initialized
with the weights obtained from the speaker-independent
system, and the net is augmented by an additional input
network, whose weight matrix is set to the identity matrix. In
this way, the neural firing behavior of this extended neural
vector quantizer is still exactly equal to the speaker-
independent neural acoustic processor.

3) For adaptation, the input network of the neural vector
quantizer is trained (while all other weights are being kept
constant) with the speaker-dependent adaptation data available
for the new speaker. As training criterion, we use the criterion
in (7), where the values p*(w,y) are obtained from the
probabilities stored in Step 1 using

 p*(w,y) = p*(y|w) . p(w) (8)

and the values p(w|y) in Equation (7) are obtained from the
actual neural firing counts delivered by the neural vector
quantizers’ output when the adaptation data is presented to its
input layer. The probabilities in (8) can be considered as joint
probabilities p*(w,y) that would have been produced by the
speaker-independent network if some speaker-independent data
W with the distribution probabilities p(w) equivalent to the
adaptation data would have been presented to the network.
These are exactly the joint probabilities that are desired as
output from the adapted neural vector quantizer, because in this
case the adapted quantizer would behave similar to the
independent quantizer, although now the adaptation data is
presented to its input. These probabilities can be considered as
target values in the information theory-based training procedure
implemented by our MMI learning criterion. If these values are
used to compute the expectation of the logarithmic probabilities
p(w|y), the training algorithm of the neural network will
automatically try to make these probabilities p similar to the
probabilities p* in order to fulfill the maximization criterion in
Equation (7).

4) After 40-50 iterations using the gradient descend approach
described in [6], the adaptation procedure is terminated. This
will take only a few minutes per network on a modern
workstation due to the small amount of adaptation data.
Speaker-dependent recognition is then performed using the new
extended neural vector quantizer in combination with the
original HMMs which remain unchanged and have been
obtained from speaker-independent training in Step 1.

Extension of the gradient descent algorithm as outlined in
Equation (3) to the augmented neural network with an
additional layer is quite straightforward, and can be carried out
using the chain rule in the following manner:
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Additionally, the fact has to be taken into account that the
partial derivative of the entropy has to be computed with
respect to the probabilities p, whereas the probabilities p* in (7)
can be considered to be fixed in this case, which even
facilitates the computational effort due to a simpler formula
resulting for the derivative. The above described procedure has
to be carried out for all four neural codebooks of the hybrid
system.

3. EXPERIMENTS & RESULTS

The speaker independent system has been trained with the si-84
part of the 1992 WSJ database. The phonetic transcriptions
were derived from the 1993 LIMSI WSJ lexicon. The tests
were performed on the 5k speaker dependent evaluation test set
(sd_et_05 nvp) of the WSJ0. The language models were the
original WSJ0 language models. Table 1 shows the results for



the speaker dependent test set for the baseline system, which
was only trained with the speaker independent utterances.
Therefore, the average error rate is higher than in [3], where
speaker dependent systems were used. All recognition
parameters like pruning, language model scale, etc. are kept on
the values, which were used for speaker independent tests in
[7].

Speaker Correct Substit. Deletion Insertion Error

001(m) 93.3 5.3 0.9 0.0 6.1
002(f) 97.8 2.0 0.2 0.2 2.5

00A(f) 90.5 8.8 0.7 1.2 10.8

00B(m) 88.2 8.0 3.8 0.8 12.5

00C(m) 80.9 13.1 6.0 0.5 19.6

00D(m) 90.6 7.2 2.2 0.2 9.7

00F(f) 91.2 7.4 1.4 1.9 10.7

203(f) 96.0 3.2 0.8 0.3 4.2

400(m) 96.4 2.1 1.5 0.4 4.1

430(m) 96.4 3.4 0.3 0.5 4.2

431(m) 94.5 5.0 0.5 0.5 6.0

432(f) 95.4 4.3 0.3 0.3 4.8

Average 92.6 5.8 1.6 0.6 7.9

Table 1: Results in % for the sd_05 task using the si-84
cross word triphone models and the trigram language
model (baseline system)

As described in [4] for each of the 12 speakers in the speaker
dependent task there are 40 utterances of adaptation data in the
WSJ0 database. These 40 sentences were used for the training
of the adaptation layers in our approach. Table 2 shows the
results for all speakers after the adaptation. The relative
improvement of the average error rate is also shown in table 2.

Speaker Corr. Sub. Del. Ins. Error relative
reduction

001(m) 95.4 3.9 0.7 0.0 4.6 24.6
002(f) 97.8 2.0 0.2 0.5 2.7 -8.0

00A(f) 90.7 8.3 1.0 0.7 10.0 7.4

00B(m) 89.0 7.5 3.5 0.3 11.3 9.6

00C(m) 85.1 10.9 4.1 0.8 15.7 19.9

00D(m) 95.2 3.6 1.2 0.2 5.1 47.4

00F(f) 90.7 7.1 2.1 1.0 10.2 4.7

203(f) 97.1 2.4 0.5 0.3 3.2 23.8

400(m) 95.7 2.6 1.7 0.4 4.7 -14.6

430(m) 97.4 2.3 0.3 0.8 3.4 19.1

431(m) 95.9 3.8 0.2 0.5 4.6 23.3

432(f) 96.2 3.8 0.0 0.0 3.8 20.8

Average 93.9 4.8 1.3 0.4 6.6 16.5

Table 2: Results in % for the adapted network on the
sd_05 task using the unchanged si-84 cross word
triphone models and the trigram language model

The improvement in error reduction is up to 47.4% for an
individual speaker compared to the results of the baseline

system for the same speaker. The average improvement is
16.5% for the adapted system. The total error rate of 6.6% of
the adapted system is already very close to the best speaker
dependent system in the official ARPA evaluation [3], which
was 6.1% for this task.

4. CONCLUSION

In this paper we presented a new and powerful adaptation
approach for hybrid connectionist/MMI large vocabulary
speech recognition systems. This new, information theory
based approach was tested on the Wall Street Journal database.
Due to the special structure of our system, only few parameters
have to be estimated, and thus the adaptation can be carried out
with a small number of utterances. The results on the WSJ
database are very promising and the improvement in error rate
is comparable to other adaptation techniques like MAP and
MLLR on similar tasks.
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