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ABSTRACT

This paper presents results of speaker-independentspeech recogni-
tion experiments concerning acoustic front-ends, models and their
structures in car environments. The database comprises 350 speak-
ers in 6 different cars. We investigate whole-word models, context-
independent phoneme models and context-dependent within-word
phoneme models. We studied task-dependent (same vocabulary
context in training and test) phoneme models and present first re-
sults on task-independent (broad context in training, i.e. phonet-
ically rich material) scenarios. The latter allows flexible vocab-
ulary definition for applications withdynamically changing com-
mand words or new applications avoiding an expensive data col-
lection. Acoustic preprocessing is carried out with mel-cepstrum
combined with spectral subtraction and SNR normalization. The
task-dependentword error rates are well below 3% for both whole-
word and phoneme models. The task-independent scenarios have
to be worked on further.

1. INTRODUCTION

Speech recognition in car environments has to cope with adverse
acoustic conditions [1], [2]. Immission levels of medium-class
cars rise from 55-58 dB(A) at 50 km/h up to 71-75 dB(A) at 130
km/h. This can lead to signal to noise ratios even below 0 dB. The
main noise influences are the car body resonance, driving speed,
and other acoustic sources in the car such as radio, wiper and pas-
senger conversation. Furthermore the Lombard effect (change of
speech characteristics in the presence of background noise) has to
be taken into account.

In [3] we presented results concerning acoustic front-ends for
speaker independent connected digit recognition on a database of
200 speakers in 3 different cars. The database has been augmented
to 350 speakers in 6 different cars (section 2.1). In this paper we
present results for speaker independent recognition of command
words and city names in a task-dependent manner and first re-
sults for task-independent scenarios [11, 10]. Acoustic prepro-
cessing (section 2.2) is carried out with mel-frequency cepstral
coefficients (MFCC) enhanced by nonlinear spectral subtraction
[4, 5] (NSS) and SNR normalization [6, 7] being the most powerful
front end investigated in [3]. HMM modeling is done by whole-
word and subword (context-independent monophone and context-
dependent triphone) models. Results for MFCC, MFCC+NSS and
MFCC+NSS+SNR preprocessing and different model structures
for task-dependent subword models are given in section 2.4. Pre-
liminary results for task-independent scenarios follow in section
2.5. An analysis of the errors over gender and cars in section 3
highlights the major problems to be dealt with in the future.

2. EXPERIMENTS

2.1. Database

For the command words and city names we use 155 speakers in 3
different lower-class cars (VW Golf, Fiat, Hyundai) of the whole
database. 116 speakers are used for training, the remaining 39
speakers are the test set for the task-dependent scenarios. The
command words scenario consists of 43 words related to the con-
trol of typical car functionality (radio,phone). The city names are
those of the 38 biggest German ones. Figure 1 and 2 show the SNR
distribution of the speech data of both scenarios for both genders
separately and joined. The SNR of each utterance was measured
via a log-energy histogram. The mean SNR for males and females
is indicated by the vertical lines in the plots.

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30

N
(
S
N
R
)

SNR/dB

male
female

all

Figure 1: SNR histogram for command words

The task-independentscenarios are trained on phonetically rich
material from 205 speakers in three different cars (BMW 750i, VW
Passat TDI, Ford Escort). The material consists of 1813 utterances
with 10978 words. Figure 3 shows the SNR distribution of the
phonetically rich material.

One can clearly see the difference between the lower class cars
of the command words respectively city names data (average SNR
6-7dB) and the medium to upper class cars of the phonetically rich
material (average SNR 10-11dB). The average SNR of the female
speakers is 1.5-2dB lower than that of the male speakers. For the
task-independent investigations we have to cope with both the vo-
cabulary context mismatch and the car mismatch.
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Figure 2: SNR histogram for city names
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Figure 3: SNR histogram for phonetically rich sentences

2.2. Acoustic Preprocessing

The speech signal is sampled with a rate of 8kHz. The sampled
signal is blocked into 32ms frames with a frame shift of 16ms.
Each frame is subjected to a Hamming window followed by a 256-
point FFT. The FFT power spectrum is convolved with a triangular
filter kernel and sampled at 15 frequencies according to a mel-
frequency scale. After the log operation on the filterbank outputs a
discrete cosine transform yields 12 mel-frequency cepstral coeffi-
cients (MFCC). The influence of a changing acoustic environment
is reduced by filtering each feature vector component with a first-
order high-pass filter. Finally the feature vector is augmented by
8 delta coefficients that are computed by linear regression over 5
frames from the first 8 MFCCs [3]. Each resulting feature vector
has 20 components.

Nonlinear spectral subtraction is used on the FFT power spec-
trum and SNR normalization is applied to the filterbank outputs
as discussed in [3]. Spectral subtraction enhances the data (in-
crease of SNR) whereas SNR normalization introduces noise (and
thereby decreases the SNR) to those parts of the data that have a
higher SNR than a given target SNR. SNR normalization has no
effect on data with an SNR below the target SNR. The benefit of
SNR normalization is an increased homogeneity of the data mate-
rial in terms of SNR. Both methods can be promisingly combined
because preliminary spectral subtraction allows SNR normaliza-

tion to affect a bigger part of the data.

2.3. Recognition Framework

The experiments are carried out with the Philips continuous-speech
recognition framework [9]. It is based on statistical modeling of
speechby left-to-right Hidden Markov Models (HMM) with Lapla-
cian mixture densities. A state-independent diagonal covariance
matrix is utilized. The whole-word andphoneme models have
fixed transition probabilities allowing only loop, forward, and skip
transitions. The emission probabilities are trainedaccording to the
maximum likelihood principle by an iterative estimation-maximiza-
tion procedure.

The speech recognition is performed by Viterbi decoding and
time-synchronous one-pass search. In addition to the valid recog-
nition vocabulary, a backgroundmodel (garbage model) is included
as a permanent rejection alternative. Although all command words
and city names were uttered in isolated manner, there is no single
word restriction during recognition.

2.4. Task-Dependent Modeling

2.4.1. Word Models

Table 1 shows the average model length (in states) and the word
error rates for command words and city names when using task-
dependent whole-word models with different acoustic front-ends.

average MFCC MFCC MFCC
model length +NSS +NSS+SNR

app 30� 11 4.45 3.28 2.78
names 25� 9 4.62 2.80 2.60

Table 1: Average model lengths and word error rates (WER) of
whole-word models for different acoustic front-ends.

The baseline MFCC front-end yields a word error rate below
5% for both scenarios. Nonlinear spectral subtraction is quite pow-
erful on these tasks. A relative improvement of 25% for the com-
mand words and 40% for the city names can be gained. SNR nor-
malization yields a further error rate reduction of 15% for com-
mand words and 7% for city names thus proving the combination
effect of both methods. The parameters of NSS and SNR normal-
ization have been developed on the word model scenarios and were
kept fixed during the rest of the investigation.

2.4.2. Phoneme Models

We investigated context-independent (CI) phonemes (monophones)
and context-dependent(CD) phonemes (triphones with monophone
fallback). The model architecture is defined by the number of seg-
ments (S) and the number of identical states in each segment (Q).
The 2,2 model for example has 4 states in total but the first and
last 2 states share the same emission probabilities. This model ar-
chitecture hence requires half the number of emission probability
parameters than the 4,1 model.

Table 2 shows the word error rates of the task-dependent rec-
ognizers for different acoustic front-ends and model structures.

The baseline error rate for CI phonemes is about 8% for both
command words and city names and is quite independent of the
model structure. CD phonemes perform significantly better (about
5% WER) and are comparable to whole-word models. Nonlinear



model MFCC MFCC+NSS MFCC+NSS
+SNR

S;Q CI CD CI CD CI CD
command words

2,2 7.91 5.07 6.49 3.53 5.38 3.40
4,1 7.48 4.27 6.43 3.22 5.28 3.22
5,1 7.36 4.39 5.63 3.03 5.07 2.54

city names
2,2 8.27 6.05 5.01 3.58 5.08 3.06
4,1 8.33 4.69 5.01 3.19 5.14 2.47
5,1 8.40 4.23 4.82 2.73 4.23 2.15

Table 2: Word error rates (in %) of context-independent (CI) and
context-dependent (CD) phoneme models trained on same vocab-
ulary context for different acoustic front-ends.

spectral subtraction and SNR normalization result in similar error
rate reductions as for whole-word models. A relative reduction of
20% to 40% due to NSS and an additional 20% reduction by SNR
normalization can be observed. The gain by NSS is quite con-
sistent over the investigated scenarios whereas the SNR normal-
ization results differ somewhat according to model structure and
task (command words or city names). For the city names mono-
phones in 2,2 and 4,1 structure even a slight degradation by SNR
normalization takes place. The 5,1 model structure is clearly ad-
vantageous over the other ones and shows consistent improvement
from CI to CD phonemes and for the two robust preprocessing
techniques.

2.5. Task-Independent Modeling

Task-independent modeling gives the opportunity to avoid expen-
sive data collections necessary for whole-word recognizers. In ad-
dition it allows applications with flexible vocabularies. With the
same parameter settings and model structures as before CD rec-
ognizers were trained on the phonetically rich material of the car-
speech database. CI training will be studied in the future. The
limited amount of phonetically rich training material makes the ex-
ploitation of other larger phonetically rich databases more promis-
ing. The CI recognizers were then used to recognize the above
command words and city names sets. Table 3 shows the word error
rates of our first studies on task-independentscenarios for different
acoustic front-ends and model structures.

model MFCC MFCC+NSS MFCC+NSS
S;Q +SNR

command words
2,2 16.1 13.7 13.9
4,1 15.5 13.4 15.2
5,1 12.6 11.4 13.7

city names
2,2 22.9 20.4 21.1
4,1 20.4 19.0 19.6
5,1 19.1 17.7 18.8

Table 3: Task-independent word error rates (in %) of context-
independent (CI) phoneme models for different acoustic front-
ends.

The degradation by task-independent modeling is less severe

for the command words than for the city names. The command
words are approximately one phoneme longer than the city names
(table 1) which makes the recognition task easier. The superiority
of the 5,1 model shows up for task-independent recognizers, too.
Nonlinear spectral subtraction is quite effective here, too (10% to
20% relative gain). The SNR normalization part of the acoustic
front-end is unable to cope with the acoustic mismach (4-5dB in
average SNR, figures 1, 2 and 3) due to the different car classes in
training and test. It nearly reverts the gain obtained by NSS.

CI phonemes should be able to significantly reduce the ob-
served degradation for these task-independent scenarios [10], [11].
This is indicated by the results in table 2 representing an ideal CD
phoneme set and will be studied in the future.

3. ERROR ANALYSIS

In order to gain some more insight on the main recognition prob-
lems we look at the recognition results for the 5,1 model structure
of the task-independent recognizers in some more detail. A subdi-
vision with regard to car and gender is shown in table 4.

model MFCC MFCC+NSS MFCC+NSS
S;Q +SNR

command words
male 7.8 8.1 9.0

female 17.5 13.9 17.5
Fiat 15.7 13.0 15.6

Hyundai 10.2 9.2 13.4
VW Golf 12.3 11.0 11.8

city names
male 13.7 13.3 14.0

female 24.4 21.7 24.4
Fiat 19.6 17.0 19.8

Hyundai 20.4 20.9 20.2
VW Golf 17.5 15.0 17.9

Table 4: Word error rates (in %) of context-independent (CI) 5,1
phoneme models for task-independent recognizers

Female speakers with up to twice as high error rates as male
speakers pose a major problem. This can be partly explained by
the lower SNR (1.5-2dB with regard to male speakers) of female
speakers. A significant car dependency can not be stated. NSS
mainly improves performance for female speakers (10% to 20%
relative) and a similar gain can be observed over the different cars.
A slight degradation of the Hyundai in the city names scenario is
the only exception to that effect. The malfunction of SNR nor-
malization in the task-independent scenarios is gender and car in-
dependent. The large global SNR mismatch of 4-5dB in average
(see figures 1, 2 and 3) between the phonetically rich training in
the medium/upper-class cars to the test in the lower-class cars is
the main reason for this effect. Figures 4 and 5 show the error
rates of the single speakers in the test sets for the baseline front-
end (MFCC) and the one with spectral subtraction (MFCC+NSS).
The first 19 speakers are male.

NSS clearly improves the performance for speakers with high
baseline error rates (> 20%) but the overall gain indicated by the
horizontal lines is about 10% relative. This is not as high as for
the task-dependent scenarios (up to 40% relative) and suggests a
dedicated front-end for these tasks.
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Figure 4: Speaker word error rates (WER) of command words for
task-independent 5,1 monophones
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Figure 5: Speaker word error rates (WER) of city names for task-
independent 5,1 monophones

4. CONCLUSION

We presented first results on command word and city name recog-
nition in the car environment on a realistic database. Task-depen-
dent whole-word and phoneme models with robust feature extrac-
tion using nonlinear spectral subtraction and SNR normalization
yield error rates below 3%. First results on task-independent mod-
eling using context-independent phoneme models based on pho-
netically rich in-car recordings show the necessity for context-
dependent modeling and a dedicated front-end for such scenarios.
Context-dependent training that will be studied in the future needs
the exploitation of larger databases of phonetically rich material
(e.g. telephone or office). The even larger acoustic mismatch then
requires a dedicated front-end, too.
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