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ABSTRACT

The paper analyses how variations of the parameters of the Liljen-
crants-Fant (LF) model of glottal flow influence the speech spec-
trum, in order to determine the spectral relevance of these paramet-
ers. The effects of small parameter variations are described ana-
lytically. This analysis also gives an indication to what extent the
LF parameters can be estimated reliably from the speech spectrum.
The effects of larger parameter variations are discussed with the
help of figures. Results are presented for a number of sets of es-
timated glottal-pulse parameters that were taken from the literat-
ure. The main conclusion is that the LF model, which, given the
fundamental period, is a three-parameter model, actually operates
as a one- or a two-parameter model.

1. INTRODUCTION

The glottal-flow characteristics during voicing, such as the open
quotient, are often derived from a spectral representation of a seg-
ment of speech, e.g. [1, 2, 3]. This is done in order to avoid the dif-
ficulties of glottal-pulse parameter estimation by inverse filtering
and subsequent waveform matching, often requiring manual fine-
tuning. It was also for this reason that the author developed an al-
gorithm, presented in [4], to estimate the parameters of the Liljen-
crants-Fant (LF) model of the glottal pulse [5] from the harmonic
magnitude spectrum. The estimates turned out to be sensitive to
small deviations of the harmonic spectrum due to noise or spec-
tral estimation errors. This observation led to the analysis of the
spectral relevance of the LF parameters presented here, which also
explains the observed sensitivity to spectral errors. The analysis
is also important for speech synthesis, because it shows how and
to what extent the glottal-pulse parameters contribute to the mag-
nitude spectrum, which mainly determines the perceptual impres-
sion of the speech.

Although the analysis is presented for the LF model and the
mean-squared log-spectral distance is used to quantify the spectral
changes, it can also be presented for other glottal-pulse models such
as the Rosenberg model [6] or the R++ model [7] and other spectral-
distance measures.

The outline of this paper is as follows. Section 2 discusses the
LF model and presents the analysis method. The analysis is per-
formed on a number of sets of estimated glottal-pulse parameters
that were taken from the literature. These parameters and the res-
ults of the analysis are presented in Section 3. Section 4 presents a
discussion and further work.

The main conclusion is that the LF model, which, given the
fundamental period T0, is a three-parameter model, actually oper-
ates as a one- or a two-parameter model. This means that certain

parameter variations have hardly any effect on the spectrum and
it explains that small changes in the measured spectrum can have
strong effects on the estimated parameters.

2. ANALYSIS METHOD

A common production model for voiced speech is a source produ-
cing the time derivative of the glottal flow that excites a filter mod-
eling the vocal-tract transfer function. The LF model is a stand-
ard model for the glottal-flow time derivative. An example of one
cycle of the glottal-flow time derivative according to the LF model
is shown in Figure 1. Its length is T0 = 1=f0, with f0 the fun-
damental frequency. The waveform is given by an exponentially
growing sine wave, until the instant of excitation Te. The glottal
flow reaches it maximum at Tp, when the time derivative changes
sign. The instant of excitation Te marks the first contact of the vo-
cal folds at the beginning of glottal closure. Glottal closure com-
pletes in a short time, called the return phase. This is modeled as
an exponential decrease of the time derivative. The return phase is
often approximated by the time constant Ta of the exponential de-
cay. The just presented T parameters are shown in Figure 1. They
are specification parameters from which the generation paramet-
ers [5] must be derived. This involves solving a non-linear equa-
tion which is discussed in, e.g., [5] and [7]. The glottal-pulse time
derivative with T parameters is denoted by _gT(t;T0; Te; Tp; Ta),
0 � t < T0. In this paper a related set of specification paramet-
ers, the R parameters, is used. They are: the open quotient (OQ),
further denoted by ro = Te=T0, the inverse speed quotient rk =
(Te�Tp)=Te, and the relative return phase ra = Ta=T0. Given T0,
the LF model is fully specified by ro, rk and ra. The glottal-pulse
time derivative with R parameters is denoted by _gR(� ; ro; rk; ra) =
_gT(�T0;To; roT0; (1� rk)roT0; raT0), 0 � � < 1.

The harmonic of the glottal-pulse time derivative at frequency
l � f0 has strength

Hl(r) =

����
Z 1

0

_gR(� ; ro; rk; ra)e
�j2�l�d�

����
2

: (1)

with r = (ro; rk; ra)
0 a parameter vector. The prime symbol de-

notes vector or matrix transposition. The number of harmonics in
digital speech is limited by l < fs=(2f0), with fs the sampling fre-
quency. The maximum number of harmonics is denoted by L. An
expression for the outcome of the integral in (1) is given in [3]. Har-
monic magnitude spectra will be denoted as column vectors, e.g.
H(r) has elements Hl(r) and will be power normalized, i.e. for
any r:

PL

l=1
Hl(r) = 1.

In order to investigate the spectral relevance of the R paramet-
ers, we study the effects of a small variation � of r on the Hl(r),
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Figure 1: Glottal-pulse time derivative in arbitrary units according
to the LF model.

which are quantified by means of the mean-squared log-spectral
distance

D(H(r + �); H(r)) =
1

L

LX
l=1

����ln(Hl(r + �)

Hl(r)
)

����
2

: (2)

Spectral differences are commonly expressed in decibels, in which
case we consider 10

p
D(H(r + �); H(r))= ln(10). For � � 1

we use the following second-order approximation

D(H(r + �); H(r)) =
1

2
�0Q��(r)�; (3)

with Q��(r) the positive-definite 3� 3 matrix of second-order de-
rivatives of (2) with respect to the elements of � at � = 0. Let �1 �
�2 � �3 � 0 denote the eigenvalues of Q��(r) and u1; u2; u3 the
corresponding orthonormal eigenvectors, then (3) can be written as

D(H(r + �); H(r)) =
1

2
(�1jv1j

2 + �2jv2j
2 + �3jv3j

2); (4)

with v1 the component of � in the direction of u1, etc.. We see that
the spectral relevance of the glottal pulse parameters is determined
by the eigenstructure of Q��(r). For instance, if �3 is small, then
a variation of r in the direction of u3 will only have a small effect
on the harmonic magnitude spectrum.

We can now explain that the sensitivity to spectral errors of
a glottal-pulse parameter estimation method based on minimizing
the mean-squared log-spectral distance also depends on the eigen-
structure of Q��(r). The estimation method selects the parameter
vector r which minimizes

D(H(r); G) =
1

L

LX
l=1

����ln(Hl(r)

Gl

)

����
2

; (5)

with G the power-normalized harmonic magnitude spectrum es-
timated after inverse filtering. If the elements of G satisfy (1) ex-
cept for a small additive spectral error �, which may be an inverse-
filtering error, an error due to noise or a model error, we can ap-
proximate (5) in a neighborhood of r by

D(H(r + �); H(r) + �) = (6)

1

2
�0Q��(r)�+

1

2
�0Q��(r)� + �0Q��(r)�;

with Q��(r) the L�L second-order derivative matrix of Q(r; �)

with respect to � and Q��(r) the 3 � L second-order derivative
matrix of Q(r; �) with respect to � and �. The quantities Q��(r)

and Q��(r) can be expressed in terms of the elements of H(r) and
their derivatives with respect to r. A nonzero � introduces an error
in the estimated parameter vector that is given by

�r = �Q��(r)
�1Q��(r)� =

w1

�1
+
w2

�2
+
w3

�3
; (7)

with w1 the component of �Q��(r)� in the direction of u1, etc..
This shows that a substantial error in the parameter estimates may
occur in the directions of the associated eigenvectors, if one or more
of the eigenvalues of Q��(r) are small.

So far, we have shown that the spectral relevance of glottal-
pulse parameters and the robustness of spectral estimation meth-
ods for glottal-pulse parameters depend on the eigenstructure of a
matrix Q��(r). In the next section we will compute the eigenval-
ues and -vectors of Q��(r) for various sets of LF parameters and
discuss the relevance of these parameters to the spectrum.

3. RESULTS

The eigenvalues and eigenvectors of Q��(r) are computed for 27
glottal-pulse parameter sets taken from the references [8] and [9].
For each r, Q��(r) was obtained by fitting a second order approx-

imation to the set fD(H(r+�); H(r))j� 2 f�1; 0; 1g3�10�4g.
The number of harmonics was given by L = 40, but the results
do not change much if this number is reduced to 10. The relative
approximation error was 0.25% on average and maximally 0.44%.
The R parameters and the eigenvalues and eigenvectors are shown
in Table 1, ordered with increasing ra.

The R parameter ro has a tendency to increase with ra, as was
also observed in [10]. There is also a strong tendency of the max-
imum eigenvalue (or of the sum of the eigenvalues) to decrease
with increasing ra and ro. This means that the significance of all
parameters to the spectrum decreases with increasing ra and ro.
We compare the effects on the harmonic magnitude spectrum of
small R-parameter variations in the directions u2 and u3 with ef-
fects of variations in the (most significant) direction u1. We ex-

press the effects in decibels and, therefore, consider
p
�2=�1 andp

�3=�1 rather than �2=�1 and �3=�1.
We first consider the entries 1–22, which contain the lower val-

ues of ra and ro. The eigenvector u1 nearly always corresponds
to a variation in the ra direction, u2 to a variation in the ro direc-
tion and u3 to a variation in the rk direction. The only exception
is entry 2, which shows an interchanged behaviour of u2 and u3
and has a larger ro than its neighbors. The ratios

p
�2=�1 (‘o’)

and
p
�3=�1 (‘+’) are plotted in Figure 2 as functions of ra for

all table entries. The entries 1–22 correspond to ra < 0:075. The
separation line ra = 0:075 is indicated in the figure. The effect
of a variation in the u3 direction on the harmonic magnitude spec-
trum is almost constant and on average about 1.7% of the effect of
a variation with the same strength in the u1 direction. The largest
effect is about 5% of the effect of a variation in the u1 direction.
This is found for entry 18, which has a larger ro than its neighbors.
It follows for this subset that ra has the highest spectral signific-
ance, that the spectral significance of ro increases with increasing



Table 1: Glottal-pulse parameters and eigenvalues and eigenvectors of Q��(r).

ra rk ro �1 �2 �3 u
0

1 u
0

2 u
0

3
[104] [104] [104]

1 0.01 0.25 0.25 4.1609 0.0023 0.0002 1.00 0.03 0.02 -0.04 0.56 0.83 -0.01 0.83 -0.56
2 0.01 0.29 0.63 3.5545 0.0010 0.0001 1.00 0.03 0.01 -0.03 0.92 0.40 0.00 -0.40 0.92
3 0.01 0.40 0.41 2.5356 0.0076 0.0004 1.00 0.04 0.02 -0.02 0.03 1.00 -0.04 1.00 -0.03
4 0.01 0.33 0.68 1.9531 0.0010 0.0004 1.00 0.05 0.01 -0.03 0.38 0.92 -0.04 0.92 -0.38
5 0.01 0.45 0.56 2.1451 0.0109 0.0005 1.00 0.05 0.02 -0.02 0.01 1.00 -0.05 1.00 -0.01
6 0.02 0.38 0.49 1.9067 0.0068 0.0003 1.00 0.05 0.02 -0.02 0.02 1.00 -0.05 1.00 -0.02
7 0.02 0.45 0.57 1.5811 0.0169 0.0004 1.00 0.06 0.01 -0.01 0.00 1.00 -0.06 1.00 0.00
8 0.02 0.51 0.65 1.6228 0.0260 0.0005 1.00 0.06 0.02 -0.02 0.00 1.00 -0.06 1.00 0.00
9 0.02 0.38 0.54 1.4043 0.0063 0.0003 1.00 0.06 0.02 -0.02 0.02 1.00 -0.06 1.00 -0.02

10 0.02 0.31 0.64 1.2146 0.0013 0.0003 1.00 0.06 0.02 -0.02 0.11 0.99 -0.06 0.99 -0.11
11 0.03 0.34 0.71 0.9549 0.0031 0.0002 1.00 0.07 0.02 -0.02 0.03 1.00 -0.07 1.00 -0.03
12 0.03 0.43 0.61 0.9935 0.0226 0.0002 1.00 0.07 0.02 -0.02 0.00 1.00 -0.07 1.00 0.00
13 0.03 0.41 0.69 0.9031 0.0123 0.0002 1.00 0.07 0.01 -0.02 0.00 1.00 -0.07 1.00 0.00
14 0.03 0.49 0.65 0.8444 0.0598 0.0003 1.00 0.08 0.03 -0.03 -0.01 1.00 -0.08 1.00 0.00
15 0.03 0.50 0.71 0.7627 0.0660 0.0002 1.00 0.09 0.03 -0.02 0.00 1.00 -0.09 1.00 0.00
16 0.04 0.51 0.68 0.6318 0.1167 0.0002 0.99 0.11 0.05 -0.05 -0.01 1.00 -0.11 0.99 0.01
17 0.04 0.48 0.71 0.4874 0.1028 0.0001 0.99 0.12 0.03 -0.03 -0.01 1.00 -0.12 0.99 0.00
18 0.04 0.44 0.89 0.2294 0.0041 0.0006 0.98 0.15 -0.09 0.11 -0.11 0.99 -0.14 0.98 0.12
19 0.05 0.51 0.65 0.4681 0.2495 0.0002 0.98 0.13 0.12 -0.11 -0.02 0.99 -0.13 0.99 0.00
20 0.05 0.52 0.71 0.3919 0.2817 0.0001 0.98 0.15 0.12 -0.11 -0.02 0.99 -0.15 0.99 0.00
21 0.05 0.42 0.76 0.2885 0.0485 0.0002 0.99 0.15 0.02 -0.02 0.00 1.00 -0.15 0.99 0.00
22 0.07 0.42 0.68 0.1919 0.1569 0.0001 0.93 0.20 0.32 -0.31 -0.07 0.95 -0.21 0.98 0.00
23 0.08 0.48 0.79 0.1465 0.0883 0.0005 -0.27 -0.09 0.96 0.91 0.30 0.28 -0.31 0.95 0.00
24 0.10 0.31 0.87 0.2326 0.0233 0.0008 -0.05 -0.04 1.00 0.84 0.55 0.06 -0.55 0.84 0.01
25 0.10 0.45 0.84 0.0414 0.0073 0.0010 -0.79 -0.44 0.42 0.42 0.12 0.90 -0.45 0.89 0.09
26 0.11 0.57 0.81 0.5502 0.0531 0.0017 -0.03 -0.03 1.00 0.82 0.56 0.04 -0.56 0.83 0.00
27 0.13 0.35 0.77 0.0258 0.0005 0.0001 -0.74 -0.62 0.28 -0.68 0.66 -0.32 -0.01 0.43 0.90

ra and that the spectral significance of rk remains at a constant low
level. The decision whether the LF model operates as a one-, two-
or three-parameter model in this ra range depends on a threshold
for the eigenvalue ratios. If we make an (arbitrary) choice for this
threshold of 10%, then we find that the LF model operates as a one-
parameter model for all entries with ra < 0:019 and as a one- or
two- parameter model for the entries with 0:019 � ra < 0:075.

The entries 23–27 show a different, less consistent, behaviour.
The values of ra and ro are higher than in the entries 1–22. The
eigenvectors are not systematically in the direction of one specific
R parameter, but the u3s are moving about in a plane orthogonal to

ro, except for entry 27. Figure 2 shows that the
p
�2=�1 tend to

decrease with increasing ra, and that the
p
�3=�1 have increased

somewhat compared with the entries 1–22. It seems that, although
the total influence of the R parameters on the harmonic spectrum
has decreased, the LF model operates more as a two- or (occasion-
ally) even as a three-parameter model. More data in this ra region
are required in order to better detect tendencies and to justify more
definite statements.

The above analysis is local, in the sense that it is only valid for
small deviations � of r. For larger deviations the situation is dif-
ferent. This is illustrated by Figure 3, which shows three plots of
D(H(r); H(rref)) with rref equal to the R parameters in entry 15
of Table 1. In each plot only one of the R parameter is varied. Vari-
ations in the ra and rk directions appear to have a smooth mono-
tonic effect on the mean-squared log-spectral distance, whereas the
variation in the ro direction has a more irregular effect, and the
plot shows the presence of local minima, which hamper spectral
parameter estimation. The sensitivity to a variation of ro decreases
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Figure 2:
p
�2=�1 (‘o’) and

p
�3=�1 (‘+’) as functions of ra.

rapidly when ro moves away from the optimum, say when jro �
ro;optj > 0:02. Figure 4 shows 3-dimensional plots of the mean-
squared log-spectral distance at a larger scale. The sharp dip in the
bottom-left picture of Figure 3 is visible as a narrow valley in the
bottom-left and top-right pictures of Figure 4. Outside this valley,
the mean-squared log-spectral distance hardly depends on ro. It is
also rather insensitive to rk. Further away from the optimum, the
influence of rk increases. This behaviour was observed for all table
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Figure 3: Mean-squared log-spectral distances [dB] for various
parameter variations. Top left: constant rk, ro, top right: constant
ra, rk, bottom left: constant ra, rk.
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Figure 4: Three-dimensional plots of the mean-squared log-
spectral distances [dB] for various parameter variations. Top left:
constant ro, top right: constant rk, bottom left: constant ra.

entries 1–22.

4. DISCUSSION AND FURTHER WORK

Regarding the relevance of the R parameters of the LF glottal-pulse
time derivative to the harmonic magnitude spectrum, we conclude
that ra has the highest spectral relevance. For ra < 0:075, we have
observed that a difference in rk only contributes to the spectral dis-
tance when it is large. A difference in ro can become spectrally rel-
evant, but only when glottal pulses are considered whose ros are
already close, say j�roj < 0:02. This type of local spectral relev-
ance of ro increases with increasing ra.

The spectral relevance of small variations of the R parameters
have been analyzed in quantitive terms. The spectral relevance of

larger deviations, however, could only be discussed in more qual-
itative terms. A next step is to try to derive tracks of maximal (or
minimal) relevance. This could be done by making a small step,
say with length j�j = 0:001, from a starting point into the u3 (or
u1) direction, and then computing each next small step in the direc-
tion in which the mean-squared log-spectral distance changes max-
imally (or minimally) with respect to the starting point. From these
tracks we can compute, for instance, the point that gives a mean-
squared log-spectral error of 1 dB in the direction of maximal (or
minimal) spectral relevance.

We have considered the relevance of small deviations of the
LF parameters to the harmonic magnitude spectrum, of which it
is believed that it mainly determines the perceptual impression of
speech. It would be interesting to apply the same type of analysis to
a mean-squared distance in a loudness space, which would give a
better founded indication of the perceptual difference between two
sets of R parameters. This type of analysis is more complicated be-
cause, in stead of the the values of the harmonics Hl, it requires
the values of the speech harmonics Hl(r)jA(j2�lf0)j

2 which de-
pend on the transfer functionA(j!) of a vocal-tract filter and which
are f0 dependent. However, it seems interesting to do this analysis,
and to verify the results with a perceptual experiment in which just-
noticable differences are measured along the tracks of maximal (or
minimal) perceptual relevance.

5. REFERENCES

[1] K.N. Stevens and H.N. Hanson. Classification of glottal vi-
bration from acoustic measurements. In O. Fujimura and
M. Hirano, editors, Vocal Fold Physiology: Voice Quality
Control, pages 147–170. Singular, San Diego, 1994.

[2] A.M.C. Sluijter. Phonetic Correlates of Stress and Accent.
PhD thesis, Leiden University, December 1995.

[3] B. Doval and C. d’Allessandro. Spectral correlates of glot-
tal waveform models: an analytic study. In Proceedings
ICASSP-97, Munich, 1997.

[4] M.G.J. Swerts and R.N.J. Veldhuis. Interactions between in-
tonation and glottal-pulse characteristics. In Proceedings of
the ESCA Workshop on Intonation, Athens, September 1997.

[5] G. Fant, J. Liljencrants, and Q. Lin. A four-parameter model
of glottal flow. Speech Transmission Laboratory Quarterly
Progress Report 4/85, KTH, 1985.

[6] A. Rosenberg. Effect of glottal-pulse shape on the quality of
natural vowels. Journal of the Acoustical Society of America,
49(2):583–590, 1971.

[7] R.N.J. Veldhuis. A computationally efficient alternative for
the LF model and its perceptual evaluation. Accepted for the
Journal of the Acoustical Society of America.

[8] D.G. Childers and C.K. Lee. Voice quality factors: Analysis
synthesis and perception. Journal of the Acoustical Society
of America, 90(5):2394–2410, 1991.

[9] I. Karlsson and J. Liljencrants. Diverse voice qualities: Mod-
els and data. TMH/QPSR 2/96, KTH, 1996.

[10] G. Fant. The LF model revisited: Transformations and fre-
quency domain analysis. Speech Transmission Laboratory
Quarterly Progress Report 2–3/95, KTH, 1995.


