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ABSTRACT

In previous work about hybrid speech recognizers with discrete
HMMs we have shown that VQs, that are trained according to an
MMI criterion, are well suited for ML estimated Bayes classifiers.
This is only valid for single VQ systems. In this paper we extend
the theory to speech recognizers with multiple VQs. This leads to
a joint training criterion for arbitrary multiple neural VQs that con-
siders the inter VQ correlation during parameter estimation. The
idea of a gradient based joint training method is derived. Experi-
mental results indicate that inter VQ correlations can cause some
degradation of recognition performance. The joint multiple VQ
training decorrelates the quantizer labels and improves system per-
formance. In addition the new training criterion allows for a less
careful way of splitting up the feature vector into multiple streams
that do not have to be statistically independent. In particular the
usage of highly correlated features in conjunction with the novel
training criterion in the experiments leads to important gains in re-
cognition performance for the speaker independentResource Man-
agement database and gives the lowest error rate of 5.0% we ever
obtained in this framework.

1. INTRODUCTION

In previous work [5] and [3] we have presented a theoretical frame-
work for a hybrid speech recognition system that consists of dis-
crete HMMs and a general Winner-takes-all neural network that
serves as VQ. The neural network maps the continuous feature vec-
tor x on a discrete label m̂ = m̂(x) that is used as a discrete
feature in the subsequent discrete HMM system where p(m̂jw) is
evaluated (w represents an HMM state). The idea in [5] is to train
the HMMs and the neural network (i.e. the VQ) simultaneously
by considering the combination of VQ and HMM as a single con-
tinuous classification system. Given a fixed Viterbi alignment of
the training data by HMM states (or phonemes) it has been shown
that maximum likelihood training of the combined system (i.e.
argmax�

P
n
log p�(x(n)jw(n))) leads to the maximum mutual

information (MMI) criterion for the parameter estimation of the
neural VQ. Thus the weights of the neural network must be set in
order to maximize the objective function given by I�(M̂;W ) =

H�(M̂)�H�(M̂ jW ). An algorithm that is similar to the conven-
tional back-propagation method that achieves this parameter op-
timization by gradient descent is derived in [3].

In practice this hybrid system performs very well on the speaker
independent Resource Management (RM) and Wall Street Journal
(WSJ) continuous speech databases (see [3],[6]). It outperforms
systems based on discrete HMMs and is comparable in recogni-
tion rates to continuous HMM systems, while being faster due to
discrete local likelihood calculation.

Differing from the theory given above and in [5] (where one
single VQ in the classification system is assumed) the hybrid
speech recognizer makes use of four different VQs, each of
them quantizing one kind of acoustic feature (e.g. cepstrum, �-
cepstrum, etc.). For reasons of simplification, during speech sys-
tem design each neural VQ was trained according to the MMI-
criterion independently from the other VQs. Thus each single
neural VQ is optimal for that system in the ML-sense, but the
combination of the four VQs might be not, since the correlations
between the different VQ labels are not taken into account.

In the following, the theoretical framework for hybrid systems
based on neural VQs and discrete classifiers is extended to the in-
tegration of multiple VQs that allows for the usage of highly cor-
related acoustic features in speech recognition systems.

2. SINGLE VS. MULTIPLE VQ

In pattern recognition systems based on discrete models (e.g.
HMMs with discrete output probabilities) local likelihood calcula-
tion is a two stage process: i) a vector quantizer, that partitions the
continuous feature space into distinct regions, maps a given feature
vector on a discrete label (x! m̂). ii) that discrete label is used to
obtain the local likelihood P (m̂jw) (where w is a pattern class or
an HMM state in a speech recognition system, the number of dif-
ferent classes (or states) is denotedK).

The so called codebook size (denoted J ), i.e. the number of re-
gions the feature space is divided into by the VQ, is crucial for clas-
sifier performance. The larger the codebook size, the higher is the
resolution of the VQ in the classification system. Thus, if the size of
the codebook is chosen too small, many details of the feature space
structure are neglected and classifier performance will be bad. On
the other hand, the number of parameters to be estimated in the VQ
and in the discrete classifier (what might become dominant in the
case of many classes, e.g. triphone states) increases with the code-
book size. Thus, the choice of the codebook size must be a com-
promise between feature space resolution and number of paramet-
ers that can be estimated properly.

In speech recognition the usage of multiple VQs in combination
with discrete HMMs is quite common [1]. In this case the compon-
ents of a given feature vector x are used to form Z different sub-
vectors x(1); : : : ;x(Z) that contain the original features of x. E.g.
x
(1) contains the cepstral features, x(2) contains the �-cepstral

features, etc. Each of these subvectors are mapped on a discrete
VQ label by an individual VQ (x(z) ! m̂(z)). Thus, the feature
vector x is mapped on a set of discrete labels m̂(1); : : : ; m̂(Z). If
the codebook size of the z-th VQ is given by J (z), the original fea-
ture space is divided by the set of multiple VQs into

QZ

z=1 J
(z)

separate regions. Hence, the usage of multiple VQs increases the
resolution of the vector quantizing stage.



In the discrete pattern classifier the set of multiple VQ labels is
used to obtain the local likelihood. To simplify calculations and to
reduce the number of parameters in the classifier, in many cases the
class dependentdistribution of the different VQ labels are assumed
statistically independent:

P (m̂jw) = P (m̂(1)
; : : : ; m̂

(Z)jw) =

ZY

z=1

P (m̂(z)jw) (1)

Therefore the number of parameters (i.e. probabilities) per class in
the discrete classifier is given by

PZ

z=1 J
(z) which is smaller than

the number of VQ partitions in general. The class dependent prob-
abilities assigned to each VQ partition cannot be chosen independ-
ently since they depend on this smaller number of parameters. If
the set of VQ labels is actually statistically independent (e.g. if the
x
(z) , 1 � z � Z are independent) Eqn. (1) works fine. However,

if the labels generated by the different VQs are correlated, Eqn. (1)
assigns a wrong probability to the VQ partitions, that causes a de-
gradation in recognition performance.

3. VQ PARAMETER ESTIMATION FOR CORRELATED
FEATURES

3.1. Independent VQ training
As mentioned above, many speech recognition systems make use
of multiple VQs. This increases the resolution of the vector quant-
izer without increasing the number of parameters to be estimated
too much. The hybrid speechrecognizer described in [6] makes use
of four (Z = 4) different neural VQs: i) for 12 cepstral parameters,
ii) for 12 �-ceps, iii) for 12 ��-ceps, iv) for pow.+�-pow+��-
pow . That way of splitting up the original acoustic feature vector
is common and has been used in several different speech systems
(e.g. see [1]) with success. This choice of feature splitting seems
to be reasonable since these four subvectors are known to be quite
uncorrelated. Hence, the four VQ labels m̂(1); : : : ; m̂(4) generated
by the neural networks are (nearly) statistically independent for a
given class (i.e. HMM state). Thus Eqn. (1) works quite well for
that case.

During training of the systems in [6] and [3], the parameters of
each of the four neural network VQs are estimated according to
the MMI objective function independently from each other (i.e.
argmax� I�(M̂

(z);W ) 8 z). However, independent neural VQ
training is a simplification that is not covered by the framework
presented in [5] where only one single VQ is considered. In that
independenttraining case, the information theoretic objective func-
tion that was used for training the set of neural VQs can be written
as:

ZX

z=1

I�(M̂
(z)
;W ) (2)

In this objective function, no interaction between the different VQs
is considered. Thus, each one of the VQs fits very well to the clas-
sification system on its own, but the behavior of the set of VQs is
unclear. If the form of the subvectorsx(z) is chosen carefully such
that they are statistically independent, interaction between differ-
ent VQs should be unimportant. However, it is difficult to select
totally uncorrelated features in advance.

In a different hybrid speech recognition system (see [2]), that
uses MLPs to estimate local posteriors, the incorporation of sev-
eral adjacent frames of acoustic feature vectors has given much im-
provement compared to the single frame features. Thus the acous-
tic information contained in a long span of adjacent frames seems
to be important for speechrecognition. Several adjacent frames can

be simply integrated in a multiple VQ system by extending the in-
put of the VQs to several frames of acoustic subvectors (e.g. for the
z-th VQ: : : : ;x(z)(t�1);x(z)(t);x(z)(t+1); : : :). If the different
VQs process multiple frames of �- and ��-features etc., then the
VQ inputs become more correlated (since the different subvectors
can be derived from each other) and the VQ outputs may be not
statistically independent. In this case Eqn. (1) fails and independ-
ent neural VQ parameter estimation is not optimal.

3.2. Single VQ training
One way to avoid problems with (possibly) correlated acoustic fea-
tures, is to process all those that might be correlated in a single
VQ. If adjacent frames of static and �-features etc. are incorpor-
ated, all these features are processed by one single VQ. In this case
no independence assumptions (like in Eqn. (1) must be made. In
addition, the MMI framework [5] for training the neural VQ para-
meters remains valid without modifications. But to achieve a VQ-
resolution for that single VQ that is comparable to the multi VQ
system, the codebook size must be chosen very large. This in-
creases the number of parameters to be trained in the neural net-
work and, what might be more important, in the classifier (i.e. dis-
crete HMM). Thus robust parameter estimation with limited train-
ing data might become intractable.

3.3. Joint VQ training
According to the theory in [5] the parameters of the neural VQ
must be estimated in order to maximize I�(M̂;W ) if the likeli-
hood of the entire system consisting of the VQ and the discrete
classifier has to be maximized. As given above in the case of mul-
tiple VQs, the single VQ label m̂ is replaced by the set of VQ
labels m̂(1); : : : ; m̂(Z). Hence, the objective function for train-
ing multiple neural VQs under consideration of feature correla-
tions between different VQs becomes I�(M̂ (1); : : : ; M̂ (Z);W ) =

H�(M̂ (1); : : : ; M̂ (Z))�H�(M̂ (1); : : : ; M̂ (Z)jW ). If the discrete
classifier makes use of the classwise independence assumption of
the different VQ labels (i.e. Eqn. (1)) the class conditional entropy
can be written as:

H�(M̂
(1)
; : : : ; M̂

(Z)jW ) =

ZX

z=1

H�(M̂
(z)jW ) (3)

In this case the objective function can be transformed into:

I�(M̂
(1)
; : : : ; M̂

(Z)
;W ) = �I�(M̂

(1)
; : : : ; M̂

(Z)) +

ZX

z=1

I�(M̂
(z)
;W )

(4)
This is a generalization of the expression found in other work
(see [4]) where only the parameters of a single VQ are estim-
ated. When comparing Eqn. (4) with Eqn. (2) it can be seen that
independent VQ training is a simplification of the full criterion
that neglects the correlations between the different VQ labels (i.e.
I�(M̂

(1); : : : ; M̂ (Z))). The full multi VQ criterion (Eqn. (4)) tries to
optimize each of the neural VQs according to the theoretical frame-
work of [5] while minimizing the inter-VQ-label correlations sim-
ultaneously. Thus if the subvectors, used as multi VQ input, are un-
correlated the VQ labels are statistically independent and Eqn. (4)
is equivalent to the separate independent VQ MMI-training (since
I�(M̂

(1); : : : ; M̂ (Z)) equals zero). On the other hand in the case of
joint VQ training, a very careful independent subvector choice is
not necessary because during training the different VQ labels are
decorrelated as far as possible.

For training the neural network VQs jointly, the criterion Eqn.
(4) must be maximized. This can be done in a way similar to [3]



by calculating the derivative of Eqn. (4) with respect to any neural
network parameter �. Since the derivative of the right hand sum
(i.e. optimization of different independent VQs) in Eqn. (4) has
been already derived in [3], only @

@�
(�I�(M̂

(1); : : : ; M̂ (Z))) needs
to be introduced here. The mutual information between the differ-
ent VQ labels can be written as:

I�(M̂
(1)
; : : : ; M̂

(Z)) =

J1X

j1=1

: : :

JZX

jZ=1

P
�

� (m̂
(1)
j1
; : : : ; m̂

(Z)
jZ

) �

� log
P�(m̂

(1)
j1
; : : : ; m̂

(Z)
jZ

)
QZ

z=1 P�(m̂
(z)
jz

)
(5)

Here P �

� (m̂
(1)
j1
; : : : ; m̂

(Z)
jZ

) is the true VQ label distribution in the

training data, and P�(m̂
(1)
j1
; : : : ; m̂

(Z)
jZ

) is the probability seen by
the Bayes classifier, i.e.:

P�(m̂
(1)
j1
; : : : ; m̂

(Z)
jZ

) =

KX

k=1

P (wk) �

ZY

z=1

P�(m̂
(z)
jz
jwk) (6)

Using the chain rule, the derivative of Eqn. (5) with respect to any
neural VQ weight � can be found in a way similar to that presented
in [5]. To circumvent the problems with the non-continuous nature
of the VQ-function, the Winner-takes-all output is approximated by
a Softmax function (similar to [3]).

4. EXPERIMENTS AND RESULTS

4.1. Test conditions

To compare the effects of independent and joint VQ training and
the different ways to divide the acoustic features, several neural
network VQs are trained. Although any kind of Winner-take-all
neural network can be used as VQ in this framework, for reasons
of simplicity in all the tests described here we limit the choice to
single layer perceptron neural networks, i.e. the VQ boundaries are
always linear.

As acoustic features every 10 ms 12 MFCC coefficients and the
signal power are extracted from the speechsignal. As dynamic fea-
tures, �- and ��-coefficients are generated comprising 39 fea-
tures per frame.

For the training of the neural network VQs and the HMMs we
use the 3990 speaker independent sentences of the Resource Man-
agement (RM) database. To compare the system performance
recognition results are obtained for the official Feb’89, Oct’89,
Feb’91 and Sep’92 DARPA RM speaker independent test sets. Re-
cognition is done via a beam search guided Viterbi decoder using
the DARPA word pair grammar (perplexity: ca. 60). Word error
rates (WER) are given as average over these four test sets.

The HMM speech recognizer makes use of strictly left-to-right
tree state HMMs. In all the tests monophone and triphone results
are given. The monophone system consists of 49 different context
independentHMMs. The triphone system consists of 2309 context
dependentHMMs that are word internal only. To balance the num-
ber of HMM parameters against the amount of training data, the
triphone states are tied via a phonetically based decision tree. By
this method, in the following experiments the number of triphone
states is always chosen in order to give maximum recognition per-
formance. For all test conditions the number of parameters used in
the single-layer perceptron VQs and for the HMMs are approxim-
ately given.

monophones wrd. int. triph
# cdb VQ HMM HMM

frms size parm WER parm WER parm
1 4�200 9k 13.6% 116k 6.1% 1.6M
3 4�200 24k 12.3% 116k 5.8% 1.6M
7 4�200 55k 11.7% 116k 5.8% 1.6M

Table 1. System with four different neural VQs that are trained
independently. The number of adjacent input feature frames is
varied.

4.2. Independent VQ training
The first series of experiments uses the traditional method of [3]
for neural VQ parameter estimation, i.e. the neural networks are
trained independently of each other according to the MMI criterion
as given in Eqn. (2). The first neural VQ quantizes the cepstral fea-
tures, the second one the�-features, the third one the��-features
and the fourth one all the energy related features. In previous exper-
iments, a codebook size of 200 for the VQs has given the best res-
ults for the triphone system, while better monophone results can be
achieved for larger codebook sizes. Hence for simplicity the code-
book size is fixed to 200 here. The experimental results for a vari-
ous number of adjacent VQ input frames are shown in Table 2. It
can be seen that using 3 or 7 adjacent instead of single frame in-
put features improves the monophone recognition rate, in spite of
introducing higher input feature correlations due to incorporation
of adjacent frames. For the triphone HMMs the input of 3 adjacent
frames gives the best result of 5.8% word error rate, while using
more frames does not improve performance. This may be due to
the higher VQ output correlations, but the reason is not totally clear
since the monophone results are not degraded. It must be noted that
the number of HMM parameters is not increased by using a larger
number of frames. In all these cases the number of VQ parameters
remains quite small.

4.3. One single VQ for all features
In a second experimental setup all acoustic features are processed
by one single neural VQ that is trained to maximize the MMI
criterion. Thus, inter-VQ correlations cannot cause degradations.
While in the previous experiments the number of partitions, the fea-
ture space is divided into by the VQ, was fixed to 2004 , in this ex-
periment the optimal codebook size must be be determined. Table
2 shows the error rates for that system with single frame feature in-
put and varying codebook sizes. The best single frame result for
triphone HMMs (6.7%), is obtained with a codebook size of 1000.
For this configuration the number of HMM parameters is very large
(4 million). In this case the VQ resolution is coarse compared to the
multi VQ system in the previous experiments. However, increas-
ing the resolution (i.e. the codebook size) would also increase the
number of HMM parameters. For a larger codebooksize (1500) the
triphone recognition rate drops while the monophone system (us-
ing much fewer parameters) still improves.

For a fixed codebook size of 1000 the single neural VQ system
performs best with 5 adjacent frames of the acoustic feature vec-
tors. In this case the monophone result (9.9%) is better than the
best results obtained by the 4 independent VQ system in the previ-
ous experiments. However, all the triphone error rates are higher
compared to the multi VQ system shown in Table 1. This may be
due to the larger number of parameters and the poor VQ resolution.

4.4. Joint VQ training
In the final series of experiments four neural VQs are trained jointly
with respect to their VQ label correlations according to Eqn. (4).



monophones wrd. int. triph
# cdb VQ HMM HMM

frms size parm WER parm WER parm
1 200 8k 14.1% 29k 8.3% 0.8M
1 500 20k 11.9% 73k 7.1% 2.0M
1 1000 40k 11.3% 145k 6.7% 4.0M
5 1000 196k 9.9% 145k 6.4% 4.0M
1 1500 60k 10.7% 218k 6.9% 6.0M

Table 2. System with one single neural VQ for all features. The
codebook size and the number of adjacent input feature frames
is varied.

monophones wrd. int. triph
# cdb VQ HMM HMM

frms size parm WER parm WER parm
3 4�200 24k 11.0% 116k 5.5% 1.6M
7 4�200 55k 10.6% 116k 5.5% 1.6M

Table 3. System with four different neural VQs that are trained
jointly. Each VQ uses different input features. The number of
adjacent input feature frames is varied.

Hence, if VQ correlations had caused performance degradations in
the experiments of Table 1, these should be reduced now. To keep
the number of HMM parameters comparable to those of the initial
experiments, the codebook sizes are fixed to 200 for all VQs. Due
to the very CPU-expensive joint VQ training method only a few
experiments have been made.

4.4.1. Splitting up the feature vector

As in the first experiments, the features are divided into four dif-
ferent subvectorscontaining cepstral parameters,�-cep.,��-cep.
and energy related features. To introduce correlations to the VQ in-
put, 3 and 7 adjacent feature frames are considered. The results are
given in Table 3. The comparison of the independent and the joint
neural VQ training shows, that for monophones the word error rate
drops from 12.3% to 11.0% (for 3 adjacent frames) and from 11.7%
to 10.6% (for 7 frames). In both cases the total number of para-
meters is the same. Thus training the neural networks jointly, im-
proves speech recognition performance. For the triphone system,
a small reduction of the word error rates from 5.8% to 5.5% can be
observed. Unfortunately, for the triphone system no improvement
was gained again when increasing the number of adjacent feature
frames from 3 to 7. This effect can also be observed for the inde-
pendently trained VQs (see Table 1). Since the joint VQ training
method should reduce the correlations between the VQs, this prob-
lem may be triphone specific and not correlation dependent only.

4.4.2. Multiple feature vector usage

In the initial experiments with independent VQ training the sub-
vectors that are fed into the different VQs are chosenvery carefully.
In the case of joint VQ training the different VQ labels are much
less correlated as forced by the training criterion. Hence, different
VQs with highly correlated feature inputs may be used. As an ex-
treme all the VQs may use the same input feature vector. In a final
experiment, four different neural VQs with codebook size 200 are
trained jointly with the same input features. In this case, the fea-
ture vector used in all VQs consists of 7 adjacent frames of 12 cep-
stral and energy parameters and their � and�� components (273
components totally). Hence, the number of VQ parameters is quite
large. Table 4 shows the recognition results. While using the same
number of HMM parameters the monophone results are much bet-
ter compared to the system in Table 3 (8.8% instead of 10.6%). The
monophone error rate is also lower compared to the single neural

monophones wrd. int. triph
# cdb VQ HMM HMM

frms size parm WER parm WER parm
7 4�200 219k 8.8% 116k 5.0% 1.6M

Table 4. System with four different neural VQs that are trained
jointly. Each VQ uses the same input vector.

VQ system (Table 2). Although the great improvements for the
monophones cannot be directly transfered to the triphone system,
the error rate for the context dependent system drops significantly
to 5.0%. This is the lowest word error we ever obtained for the hy-
brid MMI-connectionist VQ / discrete HMM system on this task
with word internal models.

5. CONCLUSIONS

The correlations between VQ labels can be the source of degrada-
tion of recognition performance. As shown by theory and the ex-
perimental results, the joint training of multiple neural MMI-VQs
or the incorporation of one single neural VQ for all features can be
used to cope with these correlations. The experiments suggest that
multi VQs seems to provide a better compromise between VQ res-
olution and the total number of parameters to estimate compared to
the single VQ system. For the triphone system mutltiple VQs out-
perform a single VQ. Joint neural VQ training can be embedded in
the traditional gradient based MMI training framework of arbitrary
Winner-take-all neural networks presented in [3].

An additional advantage of training multiple neural VQs jointly
comes from the evidence that the choice of decorrelated multi VQ
input features seems to be quite uncritical. In our case the best
recognition result is obtained when using four different (jointly
trained) VQs that have the same input feature vector. Thus, the in-
puts are totally correlated. For this system the error rate is even
lower than for the one presented in [3] that makes use of multilayer
neural networks as VQ (hence VQ boundaries are non-linear).
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