
THE IMPACT OF CHANNEL CODING ON THE PERFORMANCE OF SPATIAL
WATERMARKING FOR COPYRIGHT PROTECTION
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ABSTRACT

In this paper we analyze the effect that the application of chan-
nel coding produces on the performance of the watermark detec-
tion and decoding tests for copyright protection of images. Detec-
tor structures are derived for both tests and analytical bounds and
approximations are obtained for the bit error rate (BER) and the
receiver operating characteristic (ROC) associated with the water-
mark decoding and detection tests when block codes are employed.
The extension to other families of codes is discussed. Finally, the
analytical expressions are contrasted with experimental results in
several cases of interest.

1. INTRODUCTION

The enormous progress that digital technologies have experienced
during the last decades has contributed to popularize the use of
electronic media for transmission and storage of documents, ima-
ges, audio, video and other types of information. Information sto-
red in digital format can be copied without quality loss and distri-
buted efficiently at fairly low cost. These developments have also
increased the potential for interception, manipulation, misuse and
unauthorized distribution of information. This is in fact one of the
main impediments to commercial use of communication networks
and electronic storage media for distribution of digital informa-
tion. For this reason, the design of techniques for preserving the
ownership of digital information is fundamental to the develop-
ment of future multimedia services.

Previous research on copyright protection of still images has
resulted in the appearance of several methods based on watermar-
king. In all these techniques the contents of the original image are
altered in a fashion determined by a secret key and, optionally, by
a certain amount of information to be hidden into the image. Some
of these methods perform the watermarking process in the spatial
domain using spread spectrum techniques [7, 3]. Other methods
add the watermark in the frequency domain by computing the DCT
of the whole image [2] or in a block basis [8, 7, 1, 3].

Even though different proposals for solving the copyright en-
forcement problem have been described and tested with diverse
results, previous research in watermarking techniques has suffe-
red from the absence of a theoretical approach to the limits in
performance of these methods. In this paper we study how the
introduction of channel coding affects the performance of a water-
marking system based on a 2D-multipulse modulation. Section 2
presents this modulation and the equivalent Gaussian vector chan-
nel that results. In sections 3 and 4 we analyze the performance of
the watermark decoding and detection process with channel codes.
Finally, in section 5 we present results from simulations.

2. 2-D MULTI-PULSE AMPLITUDE MODULATION

2.1. Definitions

In a 2D-multipulse amplitude modulation watermarking scheme
[4, 5], the watermark can be expressed as a linear combination of
L orthogonal functionsfpi[m;n]g; i 2 f1; : : : ; Lg:

w[m;n] =
LX
i=1

bipi[m;n]; (1)

where the coefficientsb1; : : : ; bL encode a hidden message. The
watermarkw[m;n] is added to the original imagex[m;n] to ob-
tain the watermarked versiony[m;n] = x[m;n]+w[m; n]. In the
scheme we are considering [4, 5], the pulsespi[m;n] are defined
as

pi[m;n]
4
=

�
�[m;n]s[m; n] if (m;n) 2 Si
0 otherwise

(2)

where boths[m;n] and the setsfSig, are generated as a function
of a secret keyK to provide cryptographic security. The signal
s[m;n] is the output of a pseudonoise generator, and is modeled,
consideringK as a random variable, as an uncorrelated random se-
quence. We propose the use of key-dependent sparse pulses spread
out over the whole image to add spatial uncertainty about the lo-
cations where hidden bits are placed and to increase the resilience
to cropping. We will assume in the sequel non-overlapping pulses,
i.e. Si \ Sj = ; 8i 6= j, so the pulses will always be orthogonal.
This modulation technique is similar to a direct-sequence spread
spectrum (SS) scheme. However, the main difference with respect
to classical SS systems is that in our context the jammer is not li-
mited to additive noise attacks. He can in fact play the role of a
worst-case channel especially designed to attack the hidden signal
without perceptually degrading the image.

2.2. Equivalent Vector Channel

Due to the lack of good statistical models for images, we reduce
the observation space to the projection of the image onto the pul-
sesfpig and assume that the information in the subspace ortho-
gonal to these pulses can be ignored. We assume that the original
imagex[m;n] is not available in the detection process and that
the watermarked image is filtered with a space-variant linear filter
hkl[m;n], which models a filtering attack or a preprocessing step
before detection, obtaining a signalz[m;n] as a result. Let us de-
fine xk;l[m;n] = x[m � k; n � l] and similarlyyk;l[m;n] and
pk;li [m;n]. Then,

ri
4
= hz; pii =

LX
j=1

bj
X
k;l

hhk;lpk;lj ; pii+
X
k;l

hhk;lxk;l; pii (3)



We assume that the probability of a pixel(m;n) being assigned to
any setSi is1=L and that the assignment is done independently for
each pixel. We will model the vectorr = (r1; : : : ; rL) statistically
for a fixed imagex[m;n], treating the keyK as the only random
variable in the model. The vectorr can be expressed as [4, 5]:

r = Ab+ n (4)

whereb = (b1; : : : ; bL),A is a deterministic diagonal matrix and
n is a zero-mean uncorrelated Gaussian random vector. Let� be
the covariance matrix ofn. The elements ofA and� are [4]:

aij = �ij
1

L

X
m;n

h0;0[m;n]�2[m;n] (5)

ii =
1

L

X
m;n

�2[m;n]x2f [m;n]

+ b2i
1

L

X
m;n

h20;0[m;n]�4[m;n](E[s4]� 1)

+ b2i
1

L

X
(k;l)6=(0;0)

X
m;n

h2k;l[m;n]�2[m;n]�2[m� k; n� l]

+ b2i
L� 1

L2

X
m;n

h20;0[m; n]�4[m;n] (6)

ij = �bibj 1

L2

X
m;n

h20;0[m;n]�4[m; n]; i 6= j (7)

where�ij is the Kronecker delta function,xf [m;n] is the image
filtered byhkl[m;n]. Even though� is non-diagonal, the cross-
covariance terms are small compared to the terms in the diagonal if
L is large enough. Therefore,r can be accurately modeled as the
output of a memoryless Gaussian vector channel. We will assume
in the sequel thatbi 2 f�1; 1g; 8i and, as a consequence, that
ii = ; aii = a 8i. The watermarked image could be attacked
by adding zero-mean white noise. If the noise variance at pixel
(m,n) is�2n[m;n], then we can analyze the effect of this attack just
adding to Eq. (6) the term(

P
m;n �

2[m;n]�2n[m;n])=L.

3. CHANNEL CODING

3.1. Binary Antipodal Signaling

Suppose that codewordsbi(k) 2 f1;�1g i = 1; : : : ; L; k =
1; : : : ;M in a binary antipodal constellation are used to encode
hidden messages. The bit-by-bit hard decoder is close to the opti-
mal ML detector since the crosscovariance terms in the noise cova-
riance matrix are negligible ifL is large enough. The probability
of bit error averaged over all the keys for a given image is:

Pb = Q

�
ap


�
(8)

Channel codes can be used to improve the performance of the data
hiding system in terms of the bit error probability. From Eqs. (5)
and (6) we infer that the SNR of the equivalent channel decreases
as we increase the length of the encoded message. Hence, two are
the main factors that determine the performance of a code when
applied to the Gaussian channel derived in section 2.2: the mini-
mum distance and the redundancy of the code. The best code for a
given minimum distance is the one with minimum redundancy.

3.2. Coding

If we use a bit-by-bit hard decoder, the result can be modeled as
the output of a BSC (Binary Symmetric Channel) with parameter
p = Pb, wherePb can be obtained from (8). The Bhattacharyya
upper bound for the bit error probability of a(n; k) block code
with minimum distancedmin when applied to this BSC is

Pb � M

2(M � 1)

MX
l=2

[4p(1� p)]wl=2 (9)

whereM = 2k is the number of codewords,wl is the Hamming

weight of thelth codeword, andl = 1 corresponds to the all-zeros
codeword.

Similar bounds can be found for a convolutional code as a
function of the parameterdfree that characterizes each code. The
rate of the convolutional code also plays an important role, since
the addition of redundancy produces a degradation of the SNR in
the equivalent channel. The optimum ML detector is the mini-
mum euclidean distance detector, since the channel is approxima-
tely Gaussian and memoryless. Therefore, a Viterbi algorithm im-
plementation can be employed.

4. SYNC RECOVERY AND WATERMARK DETECTION

So far we have assumed that the exact location of the pulses was
known. However, attacks such as cropping and affine transforms
may change the spatial location of the watermark. The synchro-
nization recovery algorithm and the watermark detection test are
actually intimately related. When the former succeeds/fails to ac-
quire synchronization, we can infer that the image is watermar-
ked/not watermarked. Assume that the watermarked imagez[m;n]
may have suffered a geometric transformationT (�) with unknown
parameters� for which we do not suppose any a priori distribu-
tion. The watermark detection test can be formulated as the binary
hypothesis test:

H1 : z[m;n] = T (x[m;n] + w[m;n]; �)
H0 : z[m;n] = T (x[m;n]; �)

(10)

We will limit our analysis to transformations consisting in inte-
ger spatial shifts. Suppose also thatLs pulses are reserved for
synchronization purposes and are thus modulated by known coef-
ficients (assume +1). As we did in the decoding process, we will
use the correlation coefficientsri as the observations in the detec-
tion test. A uniformly most powerful (UMP) test does not exist
in general. However, we can instead design the ML test assuming
that � is correct and evaluate the resulting likelihood function at
each possible�. If the likelihood function is greater than the thres-
hold for some�, then we decideH1. This procedure is equivalent
to the test [4]:

l(z) = max
�

PM
i=1 f (r j b(i); �; H1)

f (r j H0; �)

H1

>
<
H0

� (11)

For every� the pdff (r j b(i); �; H1) can be approximated as
a Gaussian pdf with meanAb(i) and covariance� [4]. When the
image is not watermarked,r = n, wheren is zero-mean white
noise with variance

0 =
1

L

X
m;n

�2[m;n]x2f [m;n] (12)

In the following sections we derive the likelihood tests conditioned
to � for different channel coding schemes.



4.1. Binary Antipodal Signaling

If we neglect the cross-covariance terms in�, we get the log ma-
ximum likelihood function:

l(z) = max
�

L

2
ln
0

� a2L

2
+

1

2

�
1

0
� 1



� LX
i=1

r2i (�)

+
a



LsX
i=1

biri(�) +
LX

i=Ls+1

ln cosh

�
ari(�)



� H1

>
<
H0

�

whereri(�) = hz; T (pi; �)i.
4.2. Coding

In this case the ML detector conditioned to a certain� is not prac-
tical due to its high computational complexity. Instead, we can
define the following suboptimal test: first, obtain an estimateb̂ of
the encoded message using a hard decisor and a minimum Ham-
ming distance decoder; then, decide between the two hypothesis

H1 : r is watermarked witĥb:
H0 : r is not watermarked:

Then, the resulting watermark detection test is

l(z) = max
�

L

2
ln
0

� a2L

2
+

1

2

�
1

0
� 1



� LX
i=1

r2i (�)

+
a



LsX
i=1

biri(�) +
a



LX
i=Ls+1

ri(�)b̂i(�)

H1

>
<
H0

� (13)

With convolutional codes the optimum ML detector is compu-
tationally complex. Therefore, the algorithm proposed for block
codes is also applicable in this context. Hence,b̂ can be obtained
using a Viterbi sequence detector and the final decision is made
employing the function in (13).

4.3. Performance Evaluation

Let �(s) = lnE[esl(r)]. The probabilities of false alarm (PF )
and detection (PD) can be bounded as follows [9]:

PF � e�(s)�s _�(s) s > 0

PD � 1� e�(s)+(1�s) _�(s) s < 1
(14)

and _�(s) = �. The maximization of the likelihood function can be
difficult to implement when general affine transforms are possible,
since the maximum is very narrow. Work is in progress for desig-
ning different pulse generation techniques which allow the use of
combined brute force search and gradient optimization algorithms.

5. EXPERIMENTAL RESULTS AND COMPARISONS

In figure 1 we can see the 256x256 image “Lena” used in the expe-
riments, a watermarked version, and the perceptual mask, obtained
from a visibility function defined in [6]. In all the cases considered
the empirical values have been obtained watermarking the Lena
image with different keys and then averaging out the results. In fi-
gure 2 we plot the bit error rate (BER) as a function of the number
of pixels per information bit when Wiener filtering is performed
before detection to eliminate part of the noise due to the original
image and no attack is performed. Figure 3 shows the BER when

(a) (b)

(c)
Figure 1: (a) Original image, (b) watermarked version and (c)
perceptual mask.

the image is attacked with additive Gaussian noise with variance
at each pixel shaped by the perceptual mask to avoid visibility. Fi-
gure 4 shows a similar plot for a Wiener filtering attack. Three
cases are considered in each plot: uncoded (i.e. binary antipodal),
and codes BCH(63,36) and BCH (63,10), whose minimum distan-
ces are 11 and 27 respectively. The empirical curves have been
obtained by averaging over 50 keys. We can observe that the best
code is not the one with the greatest minimum distance, but the one
with the least redundancy. We can also observe that in all the ca-
ses coding achieves better performance for a number of pixels per
information bit greater than a certain minimum amount. The diffe-
rence between the empirical BER and the analytical upper bound
is due to small errors in the estimation ofa and.

In figure 5 we show the Chernoff bound for the probability
of false alarm (PF ) and the probability of detection (PD) without
channel coding (i.e. binary antipodal) and with a Golay(23,12)
code for message lengths of 60 and 240 bits. We have also plotted
the empiricalPD for each theoretical value ofPF (note thatPF is
extremely low to be estimated through simulation). The empirical
values have been obtained by averaging over 100 keys. We can
observe how the ROC degrades as we increase the message length
due to the decrease in SNR of the equivalent channel. We can also
see how coding degrades the ROC for a fixed message length, due
to the decrease in SNR associated with the redundancy introduced
by the code. The degradation is more apparent for large message
sizes.

6. CONCLUSIONS

In this paper we have studied the application of channel coding
schemes in a spatial watermarking system for copyright protection
of images. We have obtained detector structures and analytical
bounds for the BER and the ROC which can be used to know the
achievable performance for a given image. These bounds have
been contrasted with simulation results performed with several
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Figure 2: Bit error rate with Wiener filter preprocessing prior to
detection.
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Figure 3: Bit error rate for worst case additive Gaussian noise
attack and Wiener filter preprocessing prior to detection.

block codes. We observed that the use of block codes results in
an improvement of the BER for small bit rates and a degradation
for large bit rates. The main factors which determine the difference
in performance are the minimum distance and the redundancy of
the code. We have also observed that for a given bit rate, coding
results in a degraded ROC. These conclusions can be extended to
other families of codes.
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