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ABSTRACT

This paper presents a necessary and sufficient condition for the
factorizability of higher order spectra of complex signals. Such a
factorizability condition can be used to test if a complex signal can
modelize the output of a linear and time invariant system driven by
a stationary non gaussian white input. The condition developped
here is based on the symmetries of higher order spectra and on an
extension of a formula proposed by Marron et al. to unwrap third
order spectrum phases. It is an identity between products of six
higher order spectra values (which reduces to four values if only
phases are considered). Our factorizability test requires no phase
unwrapping, unlike existing methods developped in the cepstral
domain. Moreover its extension to the N-th order case is direct.
Simulations illustrate the deviation to this factorizability condition
in a factorizable case (linear system) and a non factorizable case
(non linear system).

1. INTRODUCTION

The problem of higher order spectral factorizability has been stud-
ied by several researchers. Tekalp and Erdem [13] and Pan and
Nikias [10] base their development on higher order cepstrum. Di-
anat and Raghuveer [6] propose an approach based on MA mod-
elling and Alsheibeili use a LDU decomposition of the cumulant
matrix [1]. The three methods compute functions closely related
to the higher order spectral factor. For a different purpose, Mar-
ron, Sanchez and Sullivan (MSS) have given a formula for phase
unwrapping of third order spectra [9]. We show that MSS formula
can be used for developping a necessary and sufficient factoriz-
ability condition.

In section 2, we generalize MSS formula to the case of higher
order spectra of complex signals. Then, we give its expression as
an identity between products of higher order spectra. In section
3, the symmetries of higher order spectra and the corresponding
matricial operators are given. Then we show in section 4 how this
formula associated with higher order spectral symmetries implies
the factorizability of the higher order spectrum. Finally, section 5
presents simulation results which show the deviation to the factor-
izability condition in the case of a linear system and a non linear
system.

2. A GENERALIZATION OF MSS FORMULA

Consider the third order spectrumS3(u; v) of a zero mean non
gaussian real random process,

S3(u; v) = EfX(u)X(v)X(�u� v)g: (1)

WhenS3(u; v) is factorizable and if its phase is correctly un-
wrapped, the following identity is satisfied [9] :

	3(u+ w; v) + 	3(u; w) = 	3(u+ v; w) + 	3(u; v) (2)

where	3(u; v) is the phase ofS3(u; v). This formula can be
generalized as shown below (a detailed development is given in
[7].)
We consider complex signalsN -th order spectrum defined as the
Fourier transform of theN -th order cumulant,

SN (w1; : : : ; wN�1) =

�N(w1; : : : ; wN�1)e
j	N (w1;::: ;wN�1): (3)

If factorizability is satisfied, then
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whereH(w) is theN -th order spectral factor.
When (4) is satisfied, the spectral factorH(w) is unique up to a
linear phase term of the formej(a+bw). Equation (4) generalizes
expressions found in [11, 12], as done in [2] with a different choice
of variables. The expression of (4) given in terms of phases is

	N (w1; : : : ; wN�1) =

N=2X
p=1

' (wp)�
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where'(w) is the phase ofH(w).
When (5) holds, theunwrappedhigher order spectrum phases

satisfy :

	N (u+

N�2X
p=1

wp; v1; : : : ; vN�2)+	N(u;w1; : : : ; wN�2) =

	N(u+
N�2X
p=1

vp; w1; : : : ; wN�2) + 	N (u; v1; : : : ; vN�2):

(6)



The result is verified by direct development. A similar equation
holds for the higher order spectrum modulus (note the terms in
log �2):

log �N (u+
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+ log �N(u; v1; : : : ; vN�2)� log �2(u+
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Consequently, we have the following identity which holds even
when the phase is not unwrapped (this identity can be verified by
direct development) :

SN (u+
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3. SYMMETRIES OF COMPLEX SIGNALS HIGHER
ORDER SPECTRA

The factorizability condition is based on MSS formula, but also
the symmetriesof complex signals higher order spectra. Studies
on these symmetries can be found in [3, 4, 5]. Here, we give the
matricial operatorsassocied with the transformations of the space
that keep the higher order spectrum invariant. We consider only
even orders. We have the two types of operations (M = N=2�1):

� The permutations of the (M + 1) first variables or of the
M last variables do not modify theN -th order spectrum
SN (u; v1; : : : ; vM ; w1; : : : ; wM). Any of the(M+1)!M !
matrices of the form :

P =

�
QM+1 0

0 QM

�
; (9)

whereQM+1 andQM are permutation matrices of dimen-
sion (M + 1) andM respectively, keep the higher order
spectrum invariant.

� The following change of variables:

u0 = u+ v1 + : : :+ vM + w1 + : : :+ wM ;

v01 = �w1; : : : ; v
0

M = �wM ;

w0

1 = �v1; : : : ; w
0

M = �vM ; (10)

transformsSN(u; v1; : : : ; vM ; w1; : : : ; wM) in its com-
plex conjugate. As a consequence, when applied to the
variables, the operatorT ,

T =

2
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(11)

keeps the higher order spectrum invariant (if we except the
complex conjugation). One can verify that products of ma-
trices of typeP andT form a finite group that keep invari-
ant the subspace support of higher order spectra of band
limited stationary signals.

4. A NECESSARY AND SUFFICIENT CONDITION FOR
FACTORIZABILITY

Theorem :SN(u1; : : : ; uN�1) is factorizable in the form (4) if
and only if (8) is satisfied for a nonzero value of(v1; : : : ; vN�2)
andSN(u1; : : : ; uN�1) satisfies the higher order spectral symme-
tries of section 3.
The choice of the vector(v1; : : : ; vN�2) requires some care: if
SN (u1; : : : ; uN�1) is periodic, its period must be different from
a multiple of (v1 + : : : + vN�2). If SN (u1; : : : ; uN�1) is pe-
riodic and discrete, which is often the case in applications based
on the DFT, it is always possible to choose(v1; : : : ; vN�2) =
(��; 0; : : : ; 0) where�� is the frequency resolution.
The necessary condition was shown in sections 2 and 3, the suffi-
cient condition is proven in the next.

4.1. Proof of the condition on the phases when they are cor-
rectly unwrapped

If we know a correct (for example the continuous) determination of
the higher order spectrum phase, and not only its determination in
the range[��; �[, the factorizability condition in terms of phases
is written:

	N (u+
N�2X
p=1

wp; v1; : : : ; vN�2)+	N(u;w1; : : : ; wN�2) =

	N(u+

N�2X
p=1

vp; w1; : : : ; wN�2) + 	N (u; v1; : : : ; vN�2):

(12)

4.1.1. Expression of the higher order spectrum phase as a
sum

When (v1; : : : ; vN�2) is fixed, the difference between the two
function of(N � 1) variables in (12):



	N(u+
PN�2

p=1 vp; w1; : : : ; wN�2) and	N (u; w1; : : : ; wN�2),
is the difference between two functions of one variable:

	N(u; w1; : : : ; wN�2)�	N (u+
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vp; w1; : : : ; wN�2) =

	N (u; v1; : : : ; vN�2)�	N(u+

N�2X
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wp; v1; : : : ; vN�2):

(13)

If 	N(u; w1; : : : ; wN�2) is a periodic function ofu, we suppose
that we have chosen a vector(v1; : : : ; vN�2) such that
` =

PN�2
p=1 vp and its multiples are different from its period; oth-

erwise, MSS formula could not be used to check the factorizabil-
ity. In order to take advantage of this property, we decompose
	N(u; w1; : : : ; wN�2) in a sum:

	N(u; w1; : : : ; wN�2) =

f(u) + g(u+

N�2X
p=1

wp) + h(u; w1; : : : ; wN�2); (14)

whereh(u; w1; : : : ; wN�2) holds no additive terms depending

only onu or
�
u+

PN�2
p=1 wp

�
.

4.1.2. h(u; w1; : : : ; wN�2) does not depend onu

Using (14) in computing the difference (13) yields:

	N(u; w1; : : : ; wN�2)�	N(u+ `; w1; : : : ; wN�2) =

f(u) + g(u+
N�2X
p=1

wp) + h(u;w1; : : : ; wN�2)

� f(u+ `)� g(u+ `+

N�2X
p=1

wp)�h(u+ `; w1; : : : ; wN�2) =

	N (u; v1; : : : ; vN�2)�	N (u+

N�2X
p=1

wp; v1; : : : ; vN�2);

(15)

with ` =
PN�2

p=1 vp. The last line in (15) holds only two terms

functions respectively ofu and
�
u+

PN�2
p=1 wp

�
. Consequentely,

h(u;w1; : : : ; wN�2) = h(u+ `; w1; : : : ; wN�2): (16)

If (v1; : : : ; vN�2) is chosen appropriately,	N(u;w1; : : : ; wN�2)
is not periodic of period̀ in u and neither ish(u; w1; : : : ; wN�2).
So, this last function does not depend onu:

h(u; w1; : : : ; wN�2) = h0(w1; : : : ; wN�2); (17)

and (14) becomes

	N(u; w1; : : : ; wN�2) =

f(u) + g(u+
N�2X
p=1

wp) + h0(w1; : : : ; wN�2): (18)

4.1.3. Application of the symmetries

Now we can apply the changes of variables of section 3, that keep
the higher order spectrum invariant. First the permutation ofu and
any of the(N=2� 1) variablesw1; w2; : : : ; wN=2�1 yields:

h0(w1; : : : ; wp; : : : ; wN=2�1; wN=2; : : : ; wN�2) =

f(wp)+h0(w1; : : : ; u; : : : ; wN=2�1; wN=2; : : : ; wN�2)� f(u);
(19)

so that

h0(w1; : : : ; wN=2�1; wN=2; : : : ; wN�2) =

N=2�1X
p=1

f(wp) + h00(wN=2; : : : ; wN�2): (20)

If we use the transformationT ,

h00(wN=2; : : : ; wN�2) = �
N�2X
p=N=2

f(�wp); (21)

and

g(u) = �f(u): (22)

Finally

	N (u;w1; : : : ; wN�2) =

f(u) +

N=2�1X
p=1

f(wp)�
N�2X
p=N=2

f(�wp)� f(u+
N�2X
p=1

wp);

(23)

which expresses the factorizability.

4.2. On the computation of the correct phase determination
(phase unwrapping)

If (12) is satisfied,	N(u;w1; : : : ; wN�2) can be decomposed as
in (23) provided that	N(u;w1; : : : ; wN�2) is a correct determi-
nation of theN -th order spectrum phase in the range[�4�; 4�[.
Now, we show that it is always possible to compute the correct de-
termination of	N (u;w1; : : : ; wN�2) from the one that is known
	0
N (u;w1; : : : ; wN�2) (given in the range[��; �[):

	N (u;w1; : : : ; wN�2) =

	0
N(u;w1; : : : ; wN�2) + 2�m(u;w1; : : : ; wN�2); (24)

wherem(u;w1; : : : ; wN�2) takes integer values. We consider
the values of	0

N(u; v; 0; : : : ; 0) (the third order spectrum phase).
A subset of these data can be used to reconstruct the spectral fac-
tor phasef(u) using a recursive multiresolution algorithm without
raising phase unwrapping difficulties [8]. The recursive structure
of the algorithm allows, in theory, the reconstruction off(u) for
all u at any frequency resolution. Whenf(u) is known, in us-
ing (5), it is possible to compute the correct determination (24) of
	N (u;w1; : : : ; wN�2) satisfying (6). (Besides, this was the ini-
tial object of the MSS recursion). Starting from the HOS data used
in this multiresolution method, there is only one manner to recon-
struct recursively	N(u;w1; : : : ; wN�2) satisfying (24).
Consequently when (8) is satisfied, it is always possible to recon-
struct the determination of the phase allowing the development of
section 4.1 since the spectral factor is unique. The knowledge of
	0
N (u;w1; : : : ; wN�2) in the range[��; �[ is sufficient.



4.3. Factorizability of the higher order spectrum modulus

A similar development applies to the modulus. When the higher
order spectrum symmetries and (7) are satisfied, the modulus log-
arithm can be written in the form

log �N (u;w1; : : : ; wN�2) = �(u) + �(u+ w1 + : : :+ wN�2)

+�(w1) + : : :+ �(wN=2�1) + �(�wN=2) + : : :+ �(�wN�2):
(25)

When (7) is satisfied,

2�(u) = log jS2(u)j ; (26)

which gives the modulus of the spectral factor. This implies the
factorizability of the modulus.
Consequently, if (8) and the higher order spectrum symmetries
hold,
SN (u;w1; : : : ; wN�2) is factorizable.

5. SIMULATION RESULTS

The simulations show the convergence of the factorizability con-
dition as a function of the number of signal samplesn used in the
estimation of the fourth order spectrum (N = 4). We compute the
evolution of the deviationDn whenn increases.

Dn , [	4(u+ w1 + w2; v1; v2) + 	4(u;w1; w2)

�	4(u+ v1 + v2; w1; w2) + 	4(u; v1; v2)]n (27)

In a first experiment, we computeD(1)
n for a signaly[k], output

of a LTI filter whose input,x[k], is a non gaussian IID sequence
(x[k] = �1):

y[k] = x[k] + 0:3 x[k � 1]: (28)

In the second experiment, we computeD
(2)
n for a signalz[k] mea-

sured at the output of a non-linear system whose input isy[k] :

z[k] = y3[k] + y[k � 1]: (29)

Figure 1 shows thatD(1)
n converges towards zero and thatD

(2)
n

converges towards a nonzero value.
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Figure 1: Convergence of the factorizability condition in the linear
(D(1)

n ) and non-linear case (D(2)
n ).

6. CONCLUSION

This paper presents a necessary and sufficient factorizability con-
dition of aN -th order spectrum. Simulation results show the de-
viation from such a condition in the case of a linear system which
satisfy the factorizability condition and a non linear system which
does not satisfy this condition.
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