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ABSTRACT

A polynomial approximation to the likelihood function allows for
marginalised estimates of model parameters to be obtained in the
form of a Volterra series. The series can be applied directly to the
observed data vector in an iterative fashion, to converge upon a
set of parameter MAP estimates with low computational cost. A
sample application towards OCR is used as an illustration.

1. INTRODUCTION

Bayesian analysis is based upon the supposition of a collection of
alternative hypotheses, that are responsible for generating observ-
able data. In the light of such data, the plausibility (quantified
by probability) is evaluated for each hypothesis. This process is
termed Bayesian inference.

Assume a set of models H1::HS , that are believed to have
an initial or prior probability of P (H1)::P (HS). When data d
is observed, Bayes rule provides a formalism for evaluating the
probability of model Hi given the data

P (Hijd) =
P (Hi)p(djHi)

p(d)
(1)

Models typically have a set of parameters expressed as a vector �
(noise parameters included). Bayes rule may be applied again to
find the posterior probability of � from its prior probability

p(�jd; Hi) =
p(dj�; Hi)p(�jHi)

p(djHi)
(2)

or

posterior =
likelihood� prior

evidence

Thus alongside deducing the plausibility of each model, this equa-
tion represents the probability density of the parameters given the
observed data and the model.

These two levels of inference, that of evaluating the plausibility
of model Hi and the plausibility of its parameters �, are linked by
the evidence

p(djHi) =

Z
p(dj�; Hi)p(�jHi) d� (3)

Rewriting equation 1

P (Hijd) =
P (Hi)

p(d)

Z
p(dj�; Hi)p(�jHi) d� (4)

p(d) is a normalising agent, as it is independent of Hi, and is
generally not computed. Thus equation 4 provides the framework
for model selection or classification.

2. DEVELOPMENT

If additive Gaussian white noise is assumed, the likelihood is for-
mulated from the error between the observed data dn and the model
prediction y

(i)
n (w). Thus the error e(i)n (w) = dn � y

(i)
n (w) is a

function of the model Hi and its parameters w (noise parameters
excluded).

For convenience of notation, we will write en(w) � e
(i)
n (w)

and yn(w) � y
(i)
n (w).

The likelihood is then the Gaussian distribution of the error,
with standard deviation �

p(djw; �;Hi) = (2��2)�
N

2 exp

�
�
�(w)

2�2

�
(5)

�(w) =
X
n

e
2
n(w)

Introducing an inverse chi prior for �

p(�jHi) = K�
�C0 exp

h
�
C1

2�2

i
(6)

of which Jeffrey’s [2] non-informative scale prior p(�jHi) =
K
�

is a particular case, we can integrate � out of the likelihood

p(djw; Hi) =

Z
p(djw; �; Hi)p(�jHi)d�

= K

1Z
0

(2��2)�
N

2 exp

�
�
�(w)

2�2

�
�
�C0 exp

h
�
C1

2�2

i
d�

= K
��

N

2 �
�
N+C0�1

2

�
2
3�C0

2

[C1 +�(w)]
1�N�C0

2 (7)

To find P (Hijd) in equation 4 we must further integrate equa-
tion 7 and the prior p(wjHi) w.r.t. w. This analysis is essentially
intractable, with the exception of the General Linear Model [1] [5].

Numerical integration methods (Monte Carlo Markov chain)
may be applied directly, but for many problems, it is common
for p(djw; Hi)p(wjHi) to have a strong peak around its mode
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Figure 1: Approximations to likelihood

wMAP . Therefore if we are able to estimate wMAP , we can im-
prove the efficiency and accuracy of sampled estimates, or alterna-
tively enable us to apply approximation methods such as Gaussian
approximations to the integrand, as employed by MacKay [3].

3. FORMATION OF THE VOLTERRA PARAMETER
ESTIMATOR

The posterior density for w is given by

p(wjd; Hi) =
p(djw; Hi)p(wjHi)

p(djHi)
(8)

from which we can find the expected value of the parameters

E[wjd; Hi] =

Z
<M

w:p(wjd; Hi) dw

=
1

p(djHi)

Z
<M

w:p(djw; Hi)p(wjHi) dw (9)

We intend E[wjd; Hi] to be used as an estimate for wMAP . The
accuracy of this estimate is dependent upon the general shape of
the posterior p(wjd; Hi), but the prevailing factor is the relative
difference in magnitude between the global maximum at wMAP

and other local maxima. Essentially, the greater the difference,
the more accurate the estimate, with equality attained in the limit
p(wjd; Hi)! �(wMAP ).

As mentioned in the previous section, the posterior derived

from the likelihood of the form [C1 +�(w)]
1�N�C0

2 in equation 7
would be well suited as a strongly peaked function to provide a good
estimate, but is not readily integrable w.r.t.w. Numerical solutions
would require inefficient recomputation of the expectation for every
data observation d. A significantly more desirable formulation
would be a functional, rather than point estimate of E[wjd; Hi].

We therefore consider replacing the likelihood with a similar
function that will allow our analysis to continue, and meet our
criteria of estimatingwMAP accurately with a functional estimate
of E[wjd; Hi]. To this end, we require a simple monotonically
decreasing function of �(w) that resembles the sharp peakedness
of the likelihood function illustrated in figure 1.

A possible family of functions (figure 1) are
�
1� 1

M
�(w)

�P
where P is the order of the function, and M is a practical limit for
�(w).

Now

�(w) =
X
n

(dn � yn(w))2

= D + Y (w)� 2
X
n

dnyn(w) (10)

where

D =
X
n

d
2
n

Y (w) =
X
n

y
2
n(w)

The function
�
1� 1

M
�(w)

�P
when expanded generates a discrete

Volterra series of order P in dn, yn(w), D, and Y (w).

p
P=1
v (djw; Hi) = 1�

1

M
D �

1

M
Y (w) +

2

M

X
n

dnyn(w)

p
P=2
v (djw; Hi) = 1�

2

M
D �

2

M
Y (w) +

4

M

X
n

dnyn(w)

+
2

M2
DY (w)�

4

M2
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X
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X
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dmdnym(w)yn(w)

p
P=3
v (djw; Hi) = : : : (11)

The integration in equation 9 over the parameters w can now be
performed numerically to obtain an approximation function for the
parameter expectation

Ev[wjd; Hi] =
1

pv(djHi)

Z
<M

w:pv(djw; Hi)p(wjHi)dw

E
P=1
v [wjd; Hi] =

1

pv(djHi)

h
U
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v [wjd; Hi] = : : : (12)

where the coefficients U are given by

U
0 =

Z
<M

w:p(wjHi) dw ; U
Y =

Z
<M

w:Y (w)p(wjHi) dw

U
y
n =

Z
<M

w:yn(w)p(wjHi) dw

U
Y Y =

Z
<M

w:Y
2(w)p(wjHi) dw

U
Y y
n =

Z
<M

w:Y (w)yn(w)p(wjHi) dw

U
yy
mn =

Z
<M

w:ym(w)yn(w)p(wjHi) dw



Finally

pv(djHi) =

Z
<M

pv(djw; Hi)p(wjHi) dw

p
P=1
v (djHi) = V

0 �
1

M
V
Y �

1

M
V
0
D +

2

M

X
n

V
y
n dn

p
P=2
v (djHi) = : : : (13)

where the coefficients V are defined similarly toU

V
0 =

Z
<M

p(wjHi) dw

V
Y =

Z
<M

Y (w)p(wjHi) dw

V
y
n = : : :

Thus the expectation functions Ev[wjd; Hi] and model evidence
pv(djHi) are described by a set of discrete Volterra series of order
P in dn and D =

P
d2n that can be directly applied to the data.

If the parameters are chosen carefully, they can be largely in-
dependent, and a quasi-random Sobol [4] sequence may be used
for efficient Monte Carlo integration to calculate the coefficients
U and V . The speed and accuracy of using Monte Carlo at this
preprocessing stage needs to be reasonable but is not critical, and
can be improved upon if there is prior knowledge of the param-
eter distribution p(wjHi), otherwise a practical non-informative
distribution is used.

Using equation 1, the Volterra series for the model evidence
pv(djHi) can be used to estimate P (Hijd) for model selection or
classification. Accuracy is good enough for first stage reduction of
the number of candidate hypotheses.

3.1. An iterative method for findingwMAP

The graphs of the likelihood approximations in figure 1 show that
higher orders of P increase the relative magnitude of the global
maximum and therefore the accuracy of the Volterra estimates, but
at a cost of handling a high order Volterra series.

With a low order approximation Ev[wjd; Hi] to E[wjd; Hi],
however, we are able to iterate towards the mode of the posterior by
using successive parameter estimates to inverse transform the data.
For example, if one of the parameters td represents time or phase
shift of a time series, and the first estimate for E[tdjd; Hi] = t̂0d,
then we apply an inverse time shift i.e. �t̂0d to the observed data d
to obtain d1. Reapplying the Volterra estimator to d1, we obtain
t̂1d, and again inverse time shift the original data d by �(t̂0d + t̂1d)
to obtain d2. This continues until dn converges to our model
prototype y(i)(0), E[tdjdn; Hi]! 0 and

P
k<n

t̂kd ! E[tdjd; Hi].

3.2. Incomplete Data

If only a subset of the observed data d = fdv;dog is valid,
e.g. due to occlusion, the Volterra estimators can still be applied
to the visible subset dv by eliminating the occluded dn terms in
equations 12 and 13, and the corresponding coefficient terms Un

and Vn from the full Volterra series. Therefore, providing the pre-
calculated Volterra coefficients are stored in an accessible form, the
preliminary numerical integration used to calculate the coefficients
need not be reapplied in order to form the reduced Volterra series,
although the overhead associated with the coefficient elimination
process increases with O(NP ).

Figure 2: Sample model prototypes and test data
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Figure 3: Progress of parameter estimates for a test sample

4. EXAMPLE IMPLEMENTATION OF A BASIC
CHARACTER RECOGNISER

A set of ten synthetic greyscale numerals centred on a 17�17 grid
were created to represent the basis of ten class models, which have
parameters representing the affine transformations linear shear sh,
rotation r, scaling sx and sy, translation xt and yt and additive
white noise standard deviation �.

Figure 2 shows sample model prototypes alongside random
test observations simulated from the model class prototypes with
uniformly distributed random transformations and additive noise
described by the following table

typical SNR 5 dB
xt, yt range �1:6 pixels
sx, sy range �0:24x

x
, 4y
y

r range �0:2 radians
sh range �0:24x

y

A set of first order Volterra series (P = 1) for the estimates of
the parameters and class probabilities were generated, based upon
the full 17 � 17 data set, and a subsampled 9 � 9 data set. This
hierarchical arrangement allows for coarse parameter estimation
over a greater range, followed by application of a finer set of
parameter estimators.

Figure 3 shows the progress of the estimates for each of the
parameters for a sample two stage process. The first eight iterations
are performed on the 9� 9 interpolated data, and the last four on
the 17� 17 grid.
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Figure 4: Histograms for errors in parameter estimates with 5dB
additive white noise in data

The Volterra estimates of the class probabilities (equation 13)
pv(Hijd) / pv(djHi) are compared for classification after every
iteration, and numerical integration only performed to evaluate the
true model evidence if the two top candidates are very close after
the final iteration. Data is never rejected at any stage in order that
the basic substitution error rate could be measured.

4.1. Results

Stage of hierarchy Errors of 100000 % error
Initial iteration 9� 9 35871 35.9

Final (8th) iteration 9� 9 7007 7.0
Initial iteration 17� 17 452 0.45

Final (4th) iteration 17� 17 74 0.07
Final classification 17� 17 0 0.00

Despite the low SNR, the relatively large data dimensionality
of 17 � 17 ensures a very small theoretical probability of error,
providing the mode of the posterior wMAP is estimated correctly.
The final classification error rate realises this theoretical probabil-
ity and the decreasing error rate at succesive stages validates the
convergence of the Volterra estimator upon the mode.

Histograms of the error in the parameter estimates for 10000
test data samples with additive white noise and no noise are dis-
played in figures 4 and 5 respectively. The histograms are each
initially computed by class, and then displayed cumulatively over
the classes. Thus the lowest line represents the error histogram for
class 0, the next for classes 0 and 1, and so forth, until the top line
represents the histogram over all classes.

As expected, the variance of the error is reduced when the addi-
tive noise is removed, though markedly more so for the translation
parameters xt and yt. One may suggest that the latter disparity is
related to the correlation between the parameters and the data. At
one end of the scale, translation affects all pixels equally, whereas
scaling, rotation and shear have a significant effect only at increas-
ing distances from their neutral points. Estimates for the scaling
parameters sx and sy are, however, generally improved because of
their influence on the D =

P
d2n power term.

Further examination of the means of the error histogram dis-
tributions reveals that the parameter sx is systematically underes-
timated and sy systematically overestimated by about 1% for all
character classes except 0 and 1. It is believed that this is due
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Figure 5: Histograms for errors in parameter estimates with no
additive noise in data

to interpolation errors arising whilst performing the affine tranfor-
mations over the discrete space. This is also considered to be the
cause of the local peaks and troughs in the histograms by way of
creating local maxima close to the global mode of the posterior.

5. CONCLUSION

Bayesian analysis provides a framework for model selection or
classification. In general, the analysis is intractable, and requires
numerical or approximation techniques to obtain estimates for the
probability of each model. The estimates can be enhanced if an
estimate of the mode of the posterior parameter distribution is avail-
able. By substituting a polynomial function for the likelihood, we
can generate an estimator in the form of a Volterra series that can
be applied directly to the data. Accuracy improves with higher
polynomial orders, at the expense of handling an exponentially
increasing number of terms. Lower orders, however, can be em-
ployed iteratively, and by example of a basic character recogniser,
are shown to be both effective and efficient multi-dimensional pa-
rameter estimators.

The Volterra parameter estimator has been further applied suc-
cessfully to occluded object recognition, using its ability to generate
estimates from incomplete data, while applicability to other fields
including motion estimation, image registration, range estimation,
and time series classification are to be investigated.
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