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ABSTRACT

Existing methods for estimating linearly s future values of a
m-variate stationary random process using a record of p vec-
tors from the past consist in first solving the one-step predic-
tion problem and then all the h-step prediction problems for
2 � h � s independently. When the Levinson algorithm
is used, each prediction problem is solved with a numerical
complexity proportional to p2. In this paper, we propose new
methods to solve the h-step prediction problems for h � 2
with a numerical complexity proportional to p.

1. INTRODUCTION

In many signal processing problems arising for example in
geophysics, communications, and neurophysics, as well as
in statistical time series analysis [3], it is a major concern
to develop a model of the underlying data series. When the
model is m-variate autoregressive linear and the theory of
linear prediction of stationary random vectors is used to cal-
culate the model, a system of linear equations must be solved
[6]. The direct solution of this system requires (mp)3 mul-
tiplication and divisions, p being the order of the predictor.
The use of the multivariate Levinson-Durbin algorithm [5, 7,
8] allows a large computational saving since it only requires
m3p2 operations.

In many instances, several observations of the m-variate
process are missing or erroneous. In these cases, it may be
of interest, not only to solve the one-step linear prediction
problem, but also some h-step prediction problems for h �
1 [1, 3, 4]. Each h-step prediction problem can be solved
separately with the multivariate Levinson algorithm. Since
this algorithm is only order recursive and not step recursive,
its complexity increases linearly with the final step s. This
fact may be a severe drawback for large values of s. It is thus
of interest to investigate methods which do not suffer from
this limitation. The idea is to find an algorithm which is not
only recursive on the order of the predictor, like the Levinson

algorithm, but which also makes use of some recursivity on
the step h.

In this paper we focus on the h-step ahead linear pre-
diction problem and new relationships among the predictors
are demonstrated. Based on these relations, order and step
recursive algorithms with a reduced computational cost are
proposed. Our algorithms solve the h-step prediction prob-
lems for h � 2 with a numerical complexity proportional to
m3p instead of m3p2.

2. PRELIMINARIES

Let (xk)k2Zbe a zero-mean m-variate stationary real ran-
dom process defined on a probability space (
;F ;P). The
Hilbert space of square-integrable univariate random vari-
ables is denoted by L2 = L2(
;F ;P). The Hilbert space
of square-integrable m-variate random vectors is the prod-
uct space

�
L2
�m

. Its scalar product is defined by hX j Y i =

E(XTY ) and its norm by kXk = E(XTX)1=2. For any
integer k, xk may be written as xk = (xk;1; : : : ; xk;m)T .
Given a final step s, the problem is to find for each step h,
1 � h � s, the linear estimate bxp+h of xp+h from the ran-
dom vectors (xi)h�i�p. For any h, (Ah;i)1�i�p�h+1 denote
the matrices such that

bxp+h =

p�h+1X
i=1

Ah;i xp+1�i (1)

and�h = E
�
(xp+h�bxp+h)(xp+h�bxp+h)T � denotes theh-

step prediction error matrix. The problem is therefore equiv-
alent to finding the matrices (Ah;i)1�i�p�h+1 and the error
matrices �h for 1 � h � s. Matrices (Ah;i)1�i�p�h+1 are
determined by the orthogonality relations

hhxp+h � bxp+h j xp+1�jii = 0 (2)

for j = 1; : : : ; p�h+1, where hhX j Y ii = E(XY T ). Let
(�� )�2Zbe the correlation function of (xk)k2Zgiven by the



matrix �� = E(xk x
T
k�� ). Using (1), (2) is equivalent to

p�h+1X
i=1

Ah;i �j�i = �h�1+j (3)

for j = 1; : : : ; p� h + 1. When h = 1, we obtain the one-
step linear multivariate prediction problem. In this case, it
is well known that (3) can be solved using the multivariate
Levinson-Durbin algorithm given in [8]. For ease of nota-
tion, sp(x) (where x 2

�
L2
�m

) denotes the product space
(sp(xj)1�j�m)

m. Therefore, any element y of sp(x) can
be written as y = Ax, where A 2 R

(m�m). Let H be
a subspace of

�
L2
�m

. The definition of sp(x) implies that
H and sp(x) are orthogonal if and only if hu j Axi = 0
for all u 2 H and for all A 2 R(m�m). This is equiva-
lent to hhu j xii = 0 for all u 2 H. For any finite integers
l; n satisfying l � n, we denote Hl;n = sp(xi)l�i�n =
(sp(xi;j)l�i�n;1�j�m)m. For any step h � 1, and for any
ordern � 1, bxhn+h denotes the linear estimate ofxn+h based
on (xi)1�i�n. bxhn+h is therefore the orthogonal projection
of xn+h onto H1;n, i.e. bxhn+h = P[xn+h j H1;n]. The ma-
trices (�h

n;i)1�i�n are such that

bxhn+h =
nX

i=1

�h
n;i xn+1�i (4)

and V h
n = hhxn+h � bxhn+h j xn+h � bxhn+hii denotes the

mean-square error matrix. Then, the stationarity of (xk)k2Z
yields (8h 2 f1; : : : ; sg), (8i 2 f1; : : : ; p� h+ 1g),

Ah;i = �h
p�h+1;i

�h = V h
p�h+1:

(5)

In the following we establish purely order recursive, purely
step recursive, and mixed order and step recursive relations
between the h-step predictors and their respective error ma-
trices. Each kind of relation is obtained by an adequate de-
composition of the observation space H1;n. For clarity, the
relations are given in different propositions. All the propo-
sitions presented in the paper are demonstrated in [2]. They
hold under the hypothesis:

Hypothesis 1. The correlation matrix of vector Xn defined
byXn = (xT1 ; : : : ; x

T
n )

T is nonsingular for any integer n �
1.

This hypothesis is not restrictive at all, and allows us to
avoid the singular case where the random process (xk)k2Z
is linearly deterministic with a finite past.

3. ORDER RECURSIVE ALGORITHM

When h = 1, (3) is solved using the multivariate Levinson-
Durbin algorithm. This method gives all the predictors bx1n+1

for 1 � n � p. In contrast to the univariate algorithm, the
multivariate version requires the solution of two sets of lin-
ear equations, one arising in the calculation of the forward
predictor bx1n+1, and the other in the calculation of the back-
ward predictor P[x0 j H1;n]. This is due to the fact that
matrix �� is generally not symmetric when � 6= 0. The
same situation appears when dealing with the h-step predic-
tion problem where h > 1. For any h � 1, (��h

n;i)1�i�n
denotes the matrices such that

P[x�h+1 j H1;n] =
nX

i=1

��h
n;i xi (6)

and �V h
n =




x�h+1�P[x�h+1 j H1;n]

��x�h+1�P[x�h+1 j
H1;n]

��
denotes the h-step backward prediction error ma-

trix. In the following proposition, we give the order recur-
sive expressions of the matrices (�h

n;i)1�i�n, (��h
n;i)1�i�n,

V h
n , and �V h

n .

Proposition 1. (8h � 1); (8n > 1); (8i 2 f1; : : : ; n�1g),
we have �h

1;1 = �h�
�1
0 , ��h

1;1 = ��h�
�1
0 , V h

1 = �0 �

�h�
�1
0 �Th , �V h

1 = �0 � ��h�
�1
0 �T�h, and

�h
n;n = [�n+h�1 �

Pn�1
i=1 �n+h�i�1 (��

1
n�1;i)

T ]

� ( �V 1
n�1)

�1
(7)

�h
n;i = �h

n�1;i � �h
n;n

��1
n�1;n�i (8)

��h
n;n = [��n�h+1 �

Pn�1
i=1 ��n�h+i+1 (�1

n�1;i)
T ]

� (V 1
n�1)

�1
(9)

��h
n;i = ��h

n�1;i � ��h
n;n�

1
n�1;n�i (10)

V h
n = V h

n�1 ��h
n;n

�V 1
n�1 (�

h
n;n)

T (11)

�V h
n = �V h

n�1 � ��h
n;n V

1
n�1 (��

h
n;n)

T : (12)

When h = 1 in proposition 1, equations (7) and (9) can
be respectively rewritten as

�1
n;n =

h
�n �

n�1X
i=1

�1
n�1;i �n�i

i�
�V 1
n�1

��1

��1
n;n =

h
��n �

n�1X
i=1

��1
n�1;i ��n+i

i�
V 1
n�1

��1

which give the multivariate Levinson-Durbin algorithm [3,
pp. 422–423]. For each n, the relations given in proposi-
tion 1 involve 2m3(2n+1)+2q products where q stands for
the number of multiplications to invert them�m prediction
error matrix V 1

n�1. Summing from n = 1 to n = p, we ob-
tain 2m3p2 + O(p) multiplications, which is the numerical
complexity to solve the one step prediction problem. Now
when h > 1, the h-step prediction problem can be solved
recursively on the order n up to n = p� h+ 1 using the re-
sults for h = 1 and the relations (7), (8), and (11). For each



n and h, these relations involve m3(2n + 1) + q products.
Summing from n = 1 to n = p� h+ 1, and taking into ac-
count that h� p in practice, we obtainm3p2+O(p) multi-
plications. Therefore, the multiple missing value estimation
problem is solved with the complexitym3p2(s�1)+O(p).

4. STEP RECURSIVE ALGORITHMS

We now present two step recursive algorithms for solving the
h-step prediction problems for h > 1. For both methods,
the one-step problem is solved using the Levinson-Durbin
algorithm. The first algorithm uses the relations established
in proposition 2. These relations may be interpreted as the
equivalent of equations (8) and (11) used in the Levinson al-
gorithm when the recursion is made on the step instead of
on the order. More precisely the relation (13) [resp. (14)]
in proposition 2 gives the expression of �h

n;i [resp. V h
n ] in

terms of�h�1
n;i+1 [resp. V h�1

n ] for a fixed n, whereas relation
(8) [resp. (11)] in proposition 1 gives the expression of �h

n;i

[resp. V h
n ] in terms of�h

n�1;i [resp. V h
n�1] for a fixed h. The

second algorithm uses the relations established in proposi-
tion 3. These relations give an expression of �h

n;i in terms

of the coefficients �j
n;i for 1 � j < h.

Proposition 2. (8h > 1); (8n > 1); (8i 2 f1; : : : ; n�1g),
we have

�h
n;i = �h�1

n;i+1 +�h�1
n;1 �1

n�1;i ��h
n;n

��1
n�1;n�i (13)

V h
n = V h�1

n + �h�1
n;1 V 1

n�1 (�
h�1
n;1 )T

��h
n;n

�V 1
n�1 (�

h
n;n)

T :
(14)

Using the results of proposition 2, we propose the fol-
lowing algorithm to solve the h-step prediction problems for
1 < h � s. This method is referred to as the SR1 algorithm.
Take n = p � s + 1. Compute the matrices �h

n and the er-
ror matrices V h

n for all h, 2 � h � p + 1 � n, using (7)
for calculating �h

n;n, (13) for calculating the matrices �h
n;i

for 1 � i � n � 1, and (14) for calculating V h
n . Accord-

ing to (5), for the last iteration h = p + 1 � n, we obtain
the matrices Ap+1�n;i for i = 1; : : : ; n and the error matrix
�p+1�n. Then, repeat the same procedure with n = n + 1
until n reaches its highest value, p� 1. The numerical com-
plexity of the SR1 algorithm is 3

2
m3p(s2 � s).

Proposition 3. (8h > 1); (8n � 1); (8i 2 f1; : : : ; ng),
we have

�h
n;i = �1

n+h�1;i+h�1 +
h�1X
j=1

�1
n+h�1;h�j �

j
n;i: (15)

Proposition 3 gives a new algorithm, called the SR2 al-
gorithm, which allows the h-step prediction problems to be
solved for 1 < h � s. For each order n, p � s + 1 �

n � p� 1, compute the matrices �h
n;i for i = 1; : : : ; n and

2 � h � p + 1 � n using (15), and the error matrices V h
n

using (14). The numerical complexity of the SR2 algorithm
is 1

6m
3p(s3 � s).

5. ORDER AND STEP RECURSIVE ALGORITHM

In this section, we present an algorithm which is order and
step recursive for solving the h-step prediction problems for
h > 1. The one-step problem is solved using the Levinson
recursion. The algorithm uses the relations established in the
following proposition:

Proposition 4. (8h > 1); (8n � 1); (8i 2 f1; : : : ; ng),
we have

�h
n;i = �h�1

n+1;i+1 + �h�1
n+1;1�

1
n;i (16)

V h
n = V h�1

n+1 + �h�1
n+1;1 V

1
n

�
�h�1
n+1;1

�T
: (17)

We now show that (16) allows the h-step prediction ma-
trices Ah;i for 1 � h � s and i = 1; : : : ; p � h + 1 to be
calculated recursively, and that (17) is a step recursive rela-
tion for the error matrices �h. Fix h, 1 < h � s. Taking
n = p � h + 1 in (16) and (17) and using (5), we obtain
respectively

Ah;i = Ah�1;i+1 +Ah�1;1�
1
p�h+1;i (18)

�h = �h�1 + Ah�1;1 V
1
p�h+1

�
Ah�1;1

�T
: (19)

In view of (18) and (19), the algorithm for estimating mul-
tiple missing values appears simply. This algorithm is re-
ferred to as the OSR algorithm. First, compute the predic-
tion matrices (�1

n;i)1�i�n and the mean-square error matri-
ces V 1

n for 1 � n � p using the multivariate Levinson al-
gorithm. Next, compute the matrices (Ah;i)1�i�p�h+1 and
the prediction error matrices �h for 2 � h � s using (18)
and (19). The numerical complexity is m3p(s � 1).

6. NUMERICAL SIMULATIONS

Numerical simulation results are now presented to compare
the above algorithms. In all cases, the multiplemissing value
estimation problem is solved assuming that the correlation
function (�� )�2Zof (xk)k2Zis known for 0 � � � p.
The numerical complexity in terms of number of multipli-
cations of these algorithms to calculate the matrices Ah;i for
1 � i � p�h+1 and the error matrices�h for 1 � h � s is
summarized in Table 1. Since the one-step prediction prob-
lem is solved in each case using the classical Levinson algo-
rithm, this table shows separately the numerical complexity
for h = 1, and the complexity for h = 2 up to h = s. In
the third column of Table 1, note that the Levinson algorithm
has a complexity proportional to p2, whereas the complexity



of the three proposed recursive algorithms is proportional to
p. Moreover, the differences among the three step recursive
algorithms lie in a different proportionality factor for each
method. So, the higher numerical complexity is for the SR2
and SR1 algorithms, which have a proportionality factor of
s3 and s2, respectively. However, in the OSR algorithm this
factor is s, and it is therefore the most suitable algorithm of
those proposed in this paper. This result is due to the fact that
the SR2 and SR1 algorithms are only step recursive, while
the OSR algorithm is both step and order recursive.

step one
h-steps for

2 � h � s

Levinson 2m3p2 + O(p) m3p2(s � 1) + O(p)

SR1 2m3p2 + O(p) 3
2m

3p(s2 � s)

SR2 2m3p2 + O(p) 1
6m

3p(s3 � s)

OSR 2m3p2 + O(p) m3p(s � 1)

Table 1: Numerical complexity of the algorithms.

Figure 1 plots the number of flops obtained when the pre-
dictors and the errors are calculated for different values of p
in the range [10; 500] and for s = 5. The number of flops
means the floating point operations (one for each addition,
product, and division). It is clear that the OSR algorithm
provides a significant improvement over the Levinson algo-
rithm and the improvement is an increasing function of p.
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Figure 1: Number of flops versus p for s = 5. Levinson
algorithm (dotted line) and OSR algorithm (solid line).

7. CONCLUSION

We have developed new algorithms for estimating multiple
missing values of a multivariate stationary process. Our al-
gorithms are not only order recursive but also step recursive.
This twofold recursivity implies an important computational
saving, as confirmed by the numerical simulations. Further
complexity reduction can be achieved using highly parallel
computational organizations which are particularly suitable
for parallel processing. The structural properties of the pro-
posed algorithms play an important role when a VLSI im-
plementation is sought. Many alternative implementations
of the algorithms presented in this paper are currently being
investigated.
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