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ABSTRACT

Existing methodsfor estimating linearly s futurevalues of a
m-variate stationary random process using arecord of p vec-
torsfromthe past consist infirst solving the one-step predic-
tion problem and then @l the h-step prediction problemsfor
2 < h < s independently. When the Levinson agorithm
isused, each prediction problem is solved with a numerical
complexity proportional to p?. Inthispaper, we proposenew
methods to solve the h-step prediction problemsfor 2 > 2
with anumerical complexity proportional to p.

1. INTRODUCTION

In many signal processing problems arising for example in
geophysics, communications, and neurophysics, as well as
in statistical time series analysis [3], it is a mgor concern
to develop amode of the underlying data series. When the
model is m-variate autoregressive linear and the theory of
linear prediction of stationary random vectorsisused to cd-
culatethemodel, asystem of linear equationsmust be solved
[6]. The direct solution of this system requires (mp)® mul-
tiplication and divisions, p being the order of the predictor.
Theuseof themultivariate L evinson-Durbinagorithm[5, 7,
8] allowsalarge computational saving sinceit only requires
m3p? operations.

In many instances, severa observationsof the m-variate
process are missing or erroneous. In these cases, it may be
of interest, not only to solve the one-step linear prediction
problem, but also some h-step prediction problemsfor A >
111, 3, 4]. Each h-step prediction problem can be solved
separately with the multivariate Levinson algorithm. Since
thisalgorithmisonly order recursive and not step recursive,
its complexity increases linearly with the final step s. This
fact may beasevere drawback for largevaluesof s. Itisthus
of interest to investigate methods which do not suffer from
thislimitation. Theideaisto find an agorithmwhich is not
only recursiveontheorder of thepredictor, liketheLevinson
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algorithm, but which also makes use of some recursivity on
thestep A.

In this paper we focus on the h-step ahead linear pre-
diction problem and new relationshipsamong the predictors
are demonstrated. Based on these relations, order and step
recursive algorithmswith a reduced computational cost are
proposed. Our algorithms solve the h-step prediction prob-
lemsfor h > 2 withanumerica complexity proportional to
m3p instead of m3p?.

2. PRELIMINARIES

Let (xr)rez be a zero-mean m-variate stationary rea ran-
dom process defined on a probability space (€2, 7, P). The
Hilbert space of square-integrable univariate random vari-
ablesisdenoted by £? = £2(2, F,P). The Hilbert space
of square-integrable m-variate random vectors is the prod-
uct space (£2)™. Itsscalar productisdefined by (X | Y) =
E(XTY) and itsnorm by || X|| = E(XTX)Y2. For any
integer k, x;, may bewrittenas zy = (zg1,.. ., T m)’ -
Given afina step s, the problem is to find for each step 4,
1 < h < s, thelinear estimate 7, 1., of x5, fromtheran-
domvectors(xi)hsisp. Forany 4, (Ah,i)lgigp—h+1 denote
the matrices such that

p—h+1
Tpyn = Z Api Tpy1-i (1)

i=1

and Xy, = E[(2prn—Tpn)(@ptn—Tpn)T | denotestheh-
step predictionerror matrix. Theproblemistherefore equiv-
aent to finding the matrices (A, ; )1<i<p—n+1 and theerror
matrices X, for 1 < h < s. Matrices (Ap i )i<i<p—h+1 A€
determined by the orthogonality relations

(xptn — Tptn [ Tpr1-5) =0 )

forj=1,...,p—h+1,where (X | Y)) = E(XY7T). Let
(T';)rez bethecorrelation function of () ez given by the



matrix T'; = E(zx ¥_ ). Using (1), (2) isequivaent to

p—h+1

Z Api Uy =Tpoiqy ©)

i=1

forj=1,...,p—h+ 1. Whenh = 1, we obtain the one-
step linear multivariate prediction problem. In this case, it
iswell known that (3) can be solved using the multivariate
Levinson-Durbin agorithm given in [8]. For ease of nota-
tion, sp(z) (where = € (£2)™) denotes the product space
(sp(x;)1<j<m)™. Therefore, any element y of sp(x) can
bewrittenasy = Az, where A € R(™*7) Let H be
a subspace of (£2)™. The definition of sp(x) implies that
‘H and sp(x) are orthogonal if and only if (u | Az) = 0
foral u € H andforal A € R™*™) Thisis equiva
lentto (u | z)) = 0 foral u € H. For any finiteintegers
l,n &atlsfylngl < n,we denoteHlyn = Sp(l‘i)lSZ’Sn =
(Sp(xi,j)lgign,lgjgm)m- For any step h > 1, and for any
ordern > 1,z , denotesthelinear estimate of x, 4 based
on (#;)1<i<n- §Z+h is therefore the orthogonal projection
of Z,qn ONMOH1 p, i€ TP, = Planyn | Hin]. Thema

trices (®): ;)1<i<n aresuch that
By = Z@ZZ Tnt1-i (4)
i=1
and V' = ((wpqn — L., | @pyn — 21 ,)) denotesthe

mean-square error matrix. Then, the stationarity of (21, )rez

yields(Yh € {1,...,s}), (Vi€ {1,...,p— h+1}),
Ap; = <I>h_ :

T ek (5)
Eh :‘/p_h_l_l.

In the following we establish purely order recursive, purely
step recursive, and mixed order and step recursive relations
between the h-step predictors and their respective error ma-
trices. Each kind of relation is obtained by an adequate de-
composition of the observation space 71 ,,. For clarity, the
relations are given in different propositions. All the propo-
sitions presented in the paper are demonstrated in [2]. They
hold under the hypothesis:

Hypothesis 1. The correlation matrix of vector X,, defined
by X,, = (=1, ..., 2I')T isnonsingular for any integer n >
1.

This hypothesisis not restrictive at dl, and allows us to
avoid the singular case where the random process (zy )rez
islinearly deterministic with afinite past.

3. ORDER RECURSIVE ALGORITHM

When i = 1, (3) is solved using the multivariate Levinson-
Durbinalgorithm. Thismethod givesall thepredictorsz)

for 1 < n < p. Incontrast to the univariate a gorithm, the
multivariate version requires the solution of two sets of lin-
ear equations, one arising in the calculation of the forward
predictor z, |, and the other in the calculation of the back-
ward predictor P[zo | H1,]. Thisis due to the fact that
matrix ', is generaly not symmetric when = # 0. The
same situation appears when dealing with the /2-step predic-

tion problen where h > 1. Forany h > 1, (<I> )1<Z<n
denotes the matrices such that
Ple_py1 | Hin] = Z@Zz T (6)
=1

and V! = ((x_pp1—Ple_psr | Hipl | 2—np1—Plz_pi |
Hi ) denotes the h-step backward prediction error ma-
trix. In the following proposition, we give the order recur-
sive expressions of the matrices (" )1<Z<n,(<I>Z

Vi and V).

yi)1gz’gn,

Proposition 1. (Vh > 1) (Vn > 1), (Vie {1 ,n—1}),
Wehat\/e<1>11_FhF‘,<I>11_FhF‘,V1 =Ty -
Iply 1FT,V1 =Ty —T_,I;'T?,, and

OF = [Tnpne1 — Sormy Tognmic (B )7

x (Vi )! 0

O = = Ph Dy 8

O =T opohgs — iy Do ngign (D54 )] ©
x (V)™

<I>Z —<I>Z 1, C.I.)h @Tll 1,n—i (10)

Vi =Vl - @, v;_1< )’ (11)

Vh Vh - q)Z,n an—l (@Z,n)T (12)

When h = 1 in proposition 1, equations (7) and (9) can
be respectively rewritten as

w= T 2% L D] (VL)
n—1

e I

i=1

1,4 F—n+i] (an—1> -

which give the multivariate Levinson-Durbin agorithm [3,
pp. 422-423]. For each n, the relations given in proposi-
tion 1involve2m?3(2n+ 1)+ 2¢ productswhere ¢ stands for
the number of multiplicationsto invert them x m prediction
error matrix V,!_;. Summing fromn = 1ton = p, we ob-
tain 2m3p? + O(p) multiplications, which isthe numerical
complexity to solve the one step prediction problem. Now
when h > 1, the h-step prediction problem can be solved
recursively ontheorder n upton = p— h+ 1 usingthere-
sultsfor - = 1 and therelations(7), (8), and (11). For each



n and h, these relations involve m?®(2n + 1) + ¢ products.
Summing fromn = 1ton = p — h + 1, and taking into ac-
count that b < p in practice, we obtain m?p? + O(p) multi-
plications. Therefore, the multiple missing val ue estimation
problem is solved with the complexity m3p?(s — 1) +O(p).

4. STEP RECURSIVE ALGORITHMS

Wenow present two step recursive algorithmsfor solvingthe
h-step prediction problems for A > 1. For both methods,
the one-step problem is solved using the Levinson-Durbin
algorithm. Thefirst algorithm uses the rel ations established
in proposition 2. These relations may be interpreted as the
equiva ent of equations (8) and (11) used intheLevinson al-
gorithm when the recursion is made on the step instead of
on the order. More precisely the relation (13) [resp. (14)]
in proposition 2 gives the expression of ®}, ; [resp. V] in
terms of <I>Z;_1H [resp. V,'~1] for afixed n, whereasrelation
(8) [resp. (11)] in proposition 1 givesthe expression of @Z, i
[resp. V,!]intermsof ®" _, ; [resp. V,!_,] forafixed h. The
second algorithm uses the relations established in proposi-
tion 3. These relations give an expression of @7 ; in terms

of the coefficients @/, ; for 1 < j < h.

Proposition 2. (Vh > 1),(Vn > 1),(Vie {1,... ,n—1}),
we have

@l = @t 10l !

n,i+ n—14
WSV A O L ()
- q)Z,n an—l (@Z,n)T

— @ ! (13)

n—1n—1¢

Using the results of proposition 2, we propose the fol-
lowing a gorithmto solvethe h-step prediction problemsfor
1 < h < 's. Thismethod isreferred to asthe SR1 algorithm.
Taken = p — s + 1. Compute the matrices &/ and the er-
ror matrices V.2 foral h, 2 < h < p+ 1 — n, using (7)
for calculating @ ,,, (13) for calculating the matrices ! ,
for 1 < i < n — 1, and (14) for calculating V,”. Accord-
ing to (5), for the last iteration » = p + 1 — n, we obtain
thematrices Apy1-,,: fori = 1,..., n andtheerror matrix
Y,4+1-n. Then, repeat the same procedure withn = n + 1
until » reaches itshighest value, p — 1. The numerical com-
plexity of the SR1 algorithmis 2m?p(s? — s).

Proposition 3. (Yh > 1),(¥Yn > 1), (Vi € {1,... n}),
we have

h—1
B _ gl 1 J
Qi =Crynotin—1 T Z ®ryho1hoy Pry (19)
=1

Proposition 3 gives a new agorithm, called the SR2 al-
gorithm, which alows the h-step prediction problemsto be
solvedfor1 < h < s. Foreachordern,p — s + 1 <

n < p— 1, computethe matrices ) ; fori = 1,... ,n and
2 < h < p+1—nusing (15), and the error matrices V,*
using (14). The numerical complexity of the SR2 agorithm
is %m?’p(sg’ —3).

5. ORDER AND STEP RECURSIVE ALGORITHM

In this section, we present an algorithm which is order and
step recursive for solving the i-step prediction problemsfor
h > 1. The one-step problem is solved using the Levinson
recursion. Thea gorithmusestherelationsestablishedinthe
following proposition:

Proposition4. (Vh > 1),(¥Yn > 1),(Vi € {1,...,n}),
we have

@Z,z’ = q)Zﬁ,iH + @Zlh D, ; (16)
Vnh = Vnh-ﬁl + @Zlh an (@Zlil)T~ (17)

We now show that (16) allowsthe h-step prediction ma-
tricesAp;forl <h <sandi=1,...,p—h+1tobe
caculated recursively, and that (17) isa step recursive rela
tion for the error matrices X5,. Fix h, 1 < h < s. Taking
n = p—h+ 1in(16) and (17) and using (5), we obtain
respectively

Api=Ap_1i41+An_11 q>11)_h+172, (18)
T
Sh=%a+ An11 Vo (Anoin) - (19)

In view of (18) and (19), the algorithm for estimating mul-
tiple missing values appears simply. This agorithmiis re-
ferred to as the OSR algorithm. First, compute the predic-
tion matrices (®,, ;)1<i<» and the mean-square error matri-
ces VI for 1 < n < p using the multivariate Levinson al-
gorithm. Next, compute the matrices (A ;)1<i<p—r+1 and
the prediction error matrices X5, for 2 < h < s using (18)
and (19). The numerical complexity ism?p(s — 1).

6. NUMERICAL SIMULATIONS

Numerical simulation results are now presented to compare
theaboveagorithms. Inall cases, themultiplemissingvalue
estimation problem is solved assuming that the correlation
function (T';);ez Of (2)rez iSknownfor 0 < = < p.
The numerical complexity in terms of number of multipli-
cations of these algorithmsto cal culate the matrices A, ; for
1 <i<p—h+1andtheerror matricesX;, forl < h < sis
summarized in Table 1. Since the one-step prediction prob-
lemissolved in each case using the classical Levinson ago-
rithm, thistable shows separately the numerical complexity
for h = 1, and the complexity forh = 2uptoh = s. In
thethird column of Table 1, notethat the Levinson a gorithm
has acomplexity proportional to p?, whereas the compl exity



of thethree proposed recursive a gorithmsis proportional to
p. Moreover, the differences among the three step recursive
algorithmslie in a different proportionality factor for each
method. So, the higher numerical complexity isfor the SR2
and SR1 agorithms, which have a proportionality factor of
53 and 52, respectively. However, in the OSR agorithmthis
factor is s, and it is therefore the most suitable algorithm of
those proposedinthispaper. Thisresultisdueto thefact that
the SR2 and SR1 algorithms are only step recursive, while
the OSR algorithmis both step and order recursive.

h-stepsfor
2<h<s
m3p?(s — 1) + O(p)

%m?’p(s2 —5)

Levinson (p)
SR1 2m3p? + O(p)
SR2 2m3p? + O(p) %m?’p(sg’ —5)
OSR 2m3p? + O(p) m3p(s — 1)

Table 1: Numerical complexity of the agorithms.

Figure 1 plotsthe number of flopsobtained whenthepre-
dictorsand the errors are calculated for different values of p
in therange [10,500] and for s = 5. The number of flops
means the floating point operations (one for each addition,
product, and division). It is clear that the OSR agorithm
provides a significant improvement over the Levinson algo-
rithm and the improvement is an increasing function of p.
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Figure 1: Number of flops versus p for s = 5. Levinson
algorithm (dotted line) and OSR a gorithm (solid line).

7. CONCLUSION

We have developed new agorithmsfor estimating multiple
missing values of a multivariate stationary process. Our al-
gorithmsare not only order recursive but a so step recursive.
Thistwofoldrecursivity impliesan important computational
saving, as confirmed by the numerical simulations. Further
complexity reduction can be achieved using highly parallel
computational organizationswhich are particularly suitable
for parallel processing. The structural propertiesof the pro-
posed agorithms play an important role when a VLS| im-
plementation is sought. Many aternative implementations
of the algorithms presented in this paper are currently being
investigated.
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