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ABSTRACT
We present an unsupervised segmentation algorithm com-
prising an annealing process to select the maximum a pos-
teriori (MAP) realization of a Hierarchical Markov Random
Field (MRF) Model. The algorithm consists of a sampling
framework which unifies the processes of model selection,
parameter estimation and image segmentation, in a single
Markov Chain. To achieve this, Reversible Jumps are incor-
porated into the Markov Chain to allow movement between
model spaces. By using partial decoupling to segment the
MRF it is possible to generate jump proposals efficiently
while providing a mechanism for the use of deterministic
methods, such as Gabor filtering, to speed up convergence.

1. INTRODUCTION

The classification of noisy or textured images into a number
of different regions is a difficult problem. This is compoun-
ded when the number of regions into which the image is to be
classified is also unknown. If each region is modelled by an
individual likelihood function, then unsupervised segmenta-
tion may be treated as a model selection problem over a com-
bined model space, where each model comprises a unique
number of these functions.

To date, most unsupervised segmentation algorithms
either exhaustively search the combined model space, or use
approximate techniques consisting of two step processes: the
first of these being a coarse image segmentation to find the
number of states and estimate the associated model paramet-
ers; the second, a high resolution supervised segmentation
algorithm, using the model and parameters from the first step.
Such procedures make several fundamental assumptions wh-
ich affect the final MAP segmentation. These include, spe-
cifying the minimum image area required to identify an in-
dividual state, defining an ad hoc distance measure between
states to achieve fuzzy-clustering, or forming region homo-
geneity tests requiring a further arbitrary parameter.

To overcome such problems, a Markov Chain technique
was developed in [1] using reversible jumps [2] to move bet-
ween model spaces. This allowed direct sampling of the pos-
terior distribution defined over the combined model space,
thus reducing the optimisation process to a single annealing
run. The reversible jump algorithm consists of a Metropolis-
Hastings sampler with a dimension balancing element. This

facilitates sampling from different model spaces, by incor-
porating proposals that increase or decrease model order. A
major drawback to this algorithm is its slow speed of con-
vergence which is attributable to the random nature in which
new model parameters are proposed. The problem becomes
intractable as the use of increasingly more complex models
(e.g. when expanding the support of a Gaussian MRF) res-
ults in progressively lower rates of acceptance.

The approach adopted in this paper circumvents this prob-
lem byadoptinga new method ofgenerating proposals which
represents a departure from existing algorithms. The basis
of our approach is to estimate new model parameters from
existing sub-partitions of the observed data when proposing
to increase the model order. To achieve this, the image must
be partitioned on a finer scale than that of the current seg-
mentation and from a single sub-partition, parameter estim-
ation must be possible. Finally, the algorithm must maintain
detailed balance, to ensure samples continue to be drawn
from the target distribution.

2. IMAGE MODELS

Algorithms are developed for both Isotropic and Gaussian
MRF (GMRF) models. If the observed image, y, is defined
on lattice, 
, then if x denotes the underlying MRF, its pos-
terior distribution may be written;
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where, Zk(�) is its Gibbs partition function, dependent on
both the k’th order likelihood function parameter vector,	k

and the MRF hyper-parameter,�. U(�) is the free energy as-
sociated with the model’s likelihood function, �i is the near-
est neighborhoodat site i, andV (xi; xj) is the potential func-
tion for the nearest neighbour clique found at sites i and j,
which takes its value from f0; 1g. For model selection pur-
poses, the partition function is approximated by its pseudo-
likelihood equivalent, where the pseudo-likelihood function
is defined to be the product of full conditional distributions
for each xi given its neighborhood state vector.



3. PARTIAL DECOUPLING

The sampling process follows a predetermined sequential
scan, updating the pixel sites, the model parameters and the
model order, respectively. Partial decoupling [3] is used to
sample the underlying MRF states, while Metropolis - Hast-
ings sub-chains are incorporated to sample model paramet-
ers and the model order.

Partial decoupling is a derivative of the conventional
Swendson-Wang algorithm[4] which uses auxiliary variables
to improve mixing when sampling from a dynamic system
near its critical temperature. The algorithm gives improved
mixing over the Swendson-Wang when the system is in the
presence of an external field and interactions are strong (as
is typically found when sampling the posterior distribution
of an MRF). The auxiliary variables introduced by these al-
gorithms may be considered bond variables which determ-
ine linkage between neighbouring pixel sites. The status of
these variables allows the formation of clusters, consisting
of groups of interconnected sites. Then, when sampling from
the MRF’s posterior distribution using the Swendson-Wang
algorithm, the state of each cluster may be updated independ-
ently. However, when using partial decoupling, clusters are
updated from a distribution conditioned on the surrounding
sites. The extent of this conditioning is dependent on a mat-
rix of bond variable hyper-parameters.

Partial decoupling allows the inclusion of prior local
knowledge into the conditional distribution for each individ-
ual bond variable. Hence, a homogeneity measure for each
pair of neighbouringpixels may be incorporatedas a prior on
the likelihood of bond formation, thus preventing the form-
ation of large clusters in detailed areas of the image.

Using the models defined in the previous section, while
denoting the auxiliary bond variables, u, and their associ-
ated hyper-parameters, �, the relevant conditional distribu-
tions for the partial decoupling sampler may be written:
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where I[�] denotes the indicator function taking values from
f0; 1g, C is a set of pixels forming a single cluster, inter-
linked by bonds and @C is the ring of pixels surrounding
C, which are also neighbours of the set of sites contained
in C. To quantify the status of an auxiliary bond variable, it
is clear from equation 2 that if uij � expf��ij�g then the
two sites, i an j are said to be bonded. The probability of
this occuring, i.e. 1 � 2 expf��ij�g can be seen to be af-
fected by the hyper-parameter, �ij , so that greater the value,
the greater the probability of bond formation.

The criterion for the generation of � is arbitrary. By us-
ing deterministic processes on the observed data, e.g. Gabor
filtering, to generate �, a mechanism is introduced that al-
lows the incorporation of more efficient deterministic meth-
ods to improve convergence of the MCMC sampling pro-
cess. The use of data to calculate hyper-parameters would
appear to break all Bayesian rules but because � is an auxil-
iary variable matrix, the process chosen affects only conver-
gence and not the target distribution.

For the Isotropic model, we choose the Kolomogorov-
Smirnov (KS) distance as a measure of difference in local-
ised grey scale distribution between overlapping regions sur-
rounding neighbouringpixels. Whenconsidering theGMRF,
an additional component is added indicative of spatial - fre-
quency content. This is achieved by convolving the image
with a bank of directionally dependent Gabor filters and cal-
culating the Euclidean distance between the output vectors
at each pair of neighbouring sites. To maintain a consistency
in bond proliferation when applying the algorithm to differ-
ent images, the distribution of hyper-parameters is normal-
ised for mean and standard deviation.

Model parameters are sampled from their posterior dis-
tributions using the Metropolis-Hastings algorithm. Propos-
als are drawn from Normal distributions and the posterior
distribution is obtained by forming the product of equation 1
with non-informative priors. The robustness of such a meth-
odology would typically be low, since the model’s charac-
teristics will change throughout the annealing process, thus
leading to the incorrect merging of states early in the optim-
isation process. However, this is overcome by the use of re-
versible jumps allowing the birth of fresh states.

4. REVERSIBLE JUMPS

To sample model order the reversible jump alogrithm is used
to allow moves within the Markov Chain which increase or
decrease model order. The reversible jump sampler uses a
Metropolis-Hastings acceptance formula to allow transitions
comprising two types of move: the splitting of one state into
two and the merging of two states into one. A traditional
Metropolis-Hastings sampler preserves detailed balance, so
ensuring the ergodicity of the Markov Chain because the old
and new model spaces are identical. However, when moving
between different models, the associated parameter spaces
may be of differing dimension. Hence to preserve detailed
balance, the parameter vectors’ dimensions are balanced by
padding with random variables. If moving between models
m1 and m2, whose parameter vectors are 	m1 and 	m2,
then by extending these vectors by appending two random
vectors, em1 and em2, their dimensions become matched.

To propose the new set of parameters, a continuous and
invertible mapping between the two extended vectors is defi-
ned so that [	m2; em2] = f([	m1; em1]); thus, new para-
meters are generated by first drawing a random vector, then



applying such a mapping. The mapping must be continuous
to allow the calculation of its Jacobian determinent, required
in the Metropolis-Hastings acceptance ratio. When consid-
ering the splitting of state c into c1 and c2, this mapping will
in general reduce to, [ c1; c2; em2] = f([ c; em1]), where
 c indicates the parameter vector associated with the likeli-
hood distribution for state c.

The mechanism for generating proposals adopted in this
paper is somewhat different to those used in [1] but still sat-
isfies the mapping requirement. Here, the region assigned to
the state being split comprises pixels which have previously
been grouped (by the partial decoupling algorithm) into smal-
ler clusters. Two of the largest Nc of these clusters are ran-
domly selected to generate two sets of maximum likelihood
estimates of model parameters. These parameters are then
used to propose a new segmentation of all pixels that are cur-
rently allocated to the existing, single state, into separate re-
gions forming the two new states. To meet the requirement
for a mapping between extended parameter vectors, thus sat-
isfying the condition for detailed balance, a small random
perturbation is added to the estimate; thus, if  ̂c1 and  ̂c2

are the maximum likelihood (ML) parameter estimates gen-
erated from the first and second randomly selected clusters
and the random vector, em1 can be expressed as two sub-
components, [ec1; ec2], then the new model parameters are
given by the mappings, c1 =  ̂c1+ec1 and c2 =  ̂c2+
ec2.

For the Isotropic case the generation of the ML parameter
estimates is straightforward. However, for the GMRF calcu-
lating the ML parameter estimates based on data contained
within a single cluster is not so trivial, hence a simpler ap-
proach is adopted: to maximize the pseudo-likelihood. To
achieve this, define the vector of statistics, c, whose elements
are given by,
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where � is the index indicating the translation correspond-
ing to the GMRF correlation parameter, �� . Then define the
matrix, D, whose elements are indexed by translations �1
and �2 and are given by,
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The two sets of model parameter proposals may be used
as the basis for the re-segmentation of all pixels previously
allocated to state c into multiple regions, assigned to both c1
and c2. The methodology used is simple and somewhat in-
tuitive: clusters are re-allocated using the partial decoupling
algorithm’s cluster coloring equation 3. However, a state of

ignorance exists when considering the conditioning of this
equation on each cluster’s neighborhood configuration. To
overcome this, all pixels of the split state are first assumed
to belong to another, different state. Next, clusters are al-
located to one of the new pair of states in order of size, the
largest first, by Gibbs sampling using their conditional prob-
abilities. The algorithm therefore colours the largest clusters
relatively independently but as the size of the clusters de-
creases and the gaps are filled between the larger, already al-
located clusters, the clusters’ coloring distributions become
conditioned to an ever greater extent on their local neigh-
bourhoods. The probability of proposing a re-segmentation
of the label field x to x+ is given by,

q(x;x+) =
Y
C2Cc

p(xi; i 2 C j u; �; �; xi
)P
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where Cc is the set of all clusters allocated to class c, before
the proposed split, and the distributions, p(xi = k; i 2 C j
u; �; �; k) are the the cluster coloring partial decoupling
conditional distributions, as given by equation 3.

When considering the opposite move, the combining of
two states into one, the reverse proposal probability (ident-
ical to that if proposing to split the clusters comprising the
new merged state into the two original states) must be calcul-
able. Because the order in which the clusters are re-allocated
is deterministic, i.e. based on cluster size only, the back cal-
culation of the reverse allocation probability is possible us-
ing the above equation.

The resulting acceptance ratio for the splitting the region
labelled by class c into regions labelled by c1 and c2 is given
by min[1;R], where,
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The first term comprises the ratio of the posterior probabil-
ities after and before the proposed split and the remaining
terms are the probabilities of generating the proposals, de-
fined: q(c) and q(c1; c2) are simply the probabilities of se-
lecting the state or states to be split or combined, q( c j
 c1; c2;x) is theprobability of generatingnew model para-
meters when combining a state, q( c1; c2 j u;y) is that
when generating two sets of new parameters when splitting
one state into two and q(x;x+) is that of re-segmentation.

The Jacobian determinant corresponding to the transform-
ation between extended parameter vectors in this case is unity
and is thus omitted from the expression. The acceptance ra-
tio for the combine move is simply the inverse of the above.

5. RESULTS

Several sets of experimental results are shown, demon-
strating the application of the unsupervised algorithm to both
isotropic and textured or GMRF models. The annealing sche-
dules used for all experiments are linear. The MRF hyper-
parameter, � is set a priori to values between 1 and 1.8. The



Original Image Horizontal Bond Prior Vertical Bond Prior Final Segmentation Final Bondmap
Figure 1: 300 iteration segmentation experiment using an Isotropic MRF and a synthesized grayscale mosaic.

Original Image Horizontal Bond Prior Vertical Bond Prior Final Segmentation Final Bondmap
Figure 2: 200 iteration segmentation experiment using a 4 parameter GMRF and a synthesized texture mosaic.

Original Image Horizontal Bond Prior Vertical Bond Prior Final Segmentation Final Bondmap
Figure 3: 1000 iteration segmentation experiment using a 22 parameter GMRF and a Brodatz texture mosaic.

effect of altering its value between these margins proved in-
significant when considering the mosaic examples given here
but when considering more subtle images, a more noticeable
effect has been observed.

The original image together with horizontal and vertical
priors for the auxiliary bond variable hyper-parameters are
shown beside the final segmentation and its accompanying
bondmap. When observing the priors, the light coloured re-
gions correspond to areas of homogeneity between pixels,
thus giving high bond prior probabilities. The final bondmap
effectively comprises a negative of an image containing the
borders between regions, with most internal pixels being bon-
ded. The improvement in convergence over [1] is apparent
when observing the results for the Isotropic model, shown
in Figure 1: the number of iterations required to achieve a
similar quality of segmentation has fallen from 500 to 300.

6. CONCLUSION

In this paper we have presented unsupervised segmentation
algorithms for both Isotropic and GMRF’s. The optimisa-
tion process, a single annealing process, is evaluated over
the combined model space by incorporating reversible jumps
into the Markov Chain to allow movement between models

of different order. The MRF sites are updated using partial-
decoupling to give improved mixing as the annealing pro-
cess passes through the critical temperature of the system.
The algorithm also facilitates the generation of efficient re-
versible jump proposals and provides a mechanism for in-
corporating determinstic methods to improve convergence.
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