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ABSTRACT

We present an unsupervised segmentation algorithm com-
prising an annealing process to select the maximum a pos-
teriori (MAP) realization of aHierarchical Markov Random
Field (MRF) Model. The algorithm consists of a sampling
framework which unifies the processes of model selection,
parameter estimation and image segmentation, in asingle
Markov Chain. To achievethis, Reversible Jumpsareincor-
porated into the Markov Chain to allow movement between
model spaces. By using partial decoupling to segment the
MREF it is possible to generate jump proposalsefficiently
while providing a mechanism for the use of deterministic
methods, such as Gabor filtering, to speed up convergence.

1. INTRODUCTION

The classification of noisy or textured imagesinto anumber
of different regionsisadifficult problem. Thisis compoun-
ded when the number of regionsintowhichtheimageistobe
classified isaso unknown. If each regionis modelled by an
individual likelihood function, then unsupervised segmenta-
tionmay betreated asamodel sel ection problem over acom-
bined model space, where each model comprises a unique
number of these functions.

To date, most unsupervised segmentation agorithms
either exhaustively search the combined model space, or use
approximatetechniquesconsisting of two step processes: the
first of these being a coarse image segmentation to find the
number of states and estimate the associated model paramet-
ers, the second, a high resolution supervised segmentation
algorithm, using the model and parametersfromthefirst step.
Such proceduresmake several fundamental assumptionswh-
ich affect the final MAP segmentation. These include, spe-
cifying the minimum image area required to identify an in-
dividua state, defining an ad hoc distance measure between
states to achieve fuzzy-clustering, or forming region homo-
geneity tests requiring a further arbitrary parameter.

To overcome such problems, a Markov Chain technique
wasdevelopedin[1] using reversiblejumps[2] to movebet-
weenmodel spaces. Thisallowed direct sampling of the pos-
terior distribution defined over the combined model space,
thus reducing the optimisation process to asingle annealing
run. Thereversiblejump algorithm consistsof aMetropolis-
Hastings sampler with a dimension balancing element. This

facilitates sampling from different model spaces, by incor-
porating proposals that increase or decrease model order. A
major drawback to this algorithm is its slow speed of con-
vergencewhichisattributableto the random naturein which
new model parametersare proposed. The problem becomes
intractable as the use of increasingly more complex models
(e.g. when expanding the support of a Gaussian MRF) res-
ultsin progressively lower rates of acceptance.

Theapproach adoptedin thispaper circumventsthisprob-
Ilem by adoptinganew method of generating proposal swhich
represents a departure from existing algorithms. The basis
of our approach is to estimate new model parameters from
existing sub-partitions of the observed datawhen proposing
toincreasethe model order. To achievethis, theimage must
be partitioned on a finer scale than that of the current seg-
mentation and from a single sub-partition, parameter estim-
ation must be possible. Finally, the algorithm must maintain
detailed balance, toensure samples continue to be drawn
from the target distribution.

2. IMAGE MODELS

Algorithms are developed for both Isotropic and Gaussian
MRF (GMRF) models. If the observed image, y, is defined
on lattice, 2, then if x denotesthe underlying MRF, its pos-
terior distribution may be written;
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where, Z; () isits Gibbs partition function, dependent on
both the £’ th order likelihood function parameter vector, ¥,
and the MRF hyper-parameter, 3. U (-) isthefreeenergy as-
sociated with the model’slikelihood function, n; isthe near-
est neighborhoodat site, and V' (x;, « ;) isthe potential func-
tion for the nearest neighbour clique found at sites i and j,
which takesits value from {0, 1}. For model selection pur-
poses, the partition function is approximated by its pseudo-
likelihood equivalent, where the pseudo-likelihood function
is defined to be the product of full conditional distributions
for each x; given its neighborhood state vector.



3. PARTIAL DECOUPLING

The sampling process follows a predetermined sequential
scan, updating the pixel sites, the model parameters and the
model order, respectively. Partial decoupling [3] is used to
sample the underlying MRF states, while Metropolis- Hast-
ings sub-chains are incorporated to sample model paramet-
ers and the model order.

Partial decoupling is a derivative of the conventional
Swendson-Wang algorithm[4] which usesauxiliary variables
to improve mixing when sampling from a dynamic system
near its critical temperature. The algorithm givesimproved
mixing over the Swendson-Wang when the system isin the
presence of an external field and interactions are strong (as
is typically found when sampling the posterior distribution
of an MRF). The auxiliary variablesintroduced by these al-
gorithms may be considered bond variables which determ-
ine linkage between neighbouring pixel sites. The status of
these variables allows the formation of clusters, consisting
of groupsof interconnected sites. Then, when sampling from
the MRF s posterior distribution using the Swendson-Wang
algorithm, the state of each cluster may be updated independ-
ently. However, when using partial decoupling, clusters are
updated from a distribution conditioned on the surrounding
sites. The extent of this conditioning is dependent on amat-
rix of bond variable hyper-parameters.

Partial decoupling allows the inclusion of prior local
knowledgeinto the conditional distributionfor each individ-
ual bond variable. Hence, a homogeneity measure for each
pair of neighbouring pixelsmay beincorporatedasaprior on
the likelihood of bond formation, thus preventing the form-
ation of large clustersin detailed areas of the image.

Using the models defined in the previous section, while
denoting the auxiliary bond variables, u, and their associ-
ated hyper-parameters, §, the relevant conditional distribu-
tionsfor the partial decoupling sampler may be written:
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where I[-] denotes the indicator function taking values from
{0,1}, C isaset of pixels forming a single cluster, inter-
linked by bonds and 9C is the ring of pixels surrounding
C', which are aso neighbours of the set of sites contained
in C. To quantify the status of an auxiliary bond variable, it
is clear from equation 2 that if u;; > exp{—J;; 3} then the
two sites, ¢ an j are said to be bonded. The probability of
this occuring, i.e. 1 — 2exp{—d;;3} can be seen to be &f-
fected by the hyper-parameter, d;;, so that greater the value,
the greater the probability of bond formation.

The criterion for the generation of d is arbitrary. By us-
ing deterministic processes on the observed data, e.g. Gabor
filtering, to generate §, a mechanism is introduced that al-
lows the incorporation of more efficient deterministic meth-
ods to improve convergence of the MCMC sampling pro-
cess. The use of data to calculate hyper-parameters would
appear to break all Bayesian rules but because d is an auxil-
iary variablematrix, the process chosen affectsonly conver-
gence and not the target distribution.

For the Isotropic model, we choose the K olomogorov-
Smirnov (KS) distance as a measure of differencein local-
ised grey scal e distribution between overlapping regionssur-
rounding neighbouring pixels. When consideringtheGM RF,
an additional component is added indicative of spatial - fre-
guency content. Thisis achieved by convolving the image
with abank of directionally dependent Gabor filtersand cal-
culating the Euclidean distance between the output vectors
at each pair of neighbouringsites. To maintain aconsistency
in bond proliferation when applying the algorithm to differ-
ent images, the distribution of hyper-parametersis normal-
ised for mean and standard deviation.

Model parameters are sampled from their posterior dis-
tributions using the M etropolis-Hastingsa gorithm. Propos-
as are drawn from Normal distributions and the posterior
distribution isobtained by forming the product of equation 1
with non-informativepriors. Therobustnessof such ameth-
odology would typically be low, since the model’s charac-
teristics will change throughout the annealing process, thus
leading to theincorrect merging of states early in the optim-
isation process. However, thisis overcome by the use of re-
versible jumps allowing the birth of fresh states.

4. REVERSIBLE JUMPS

To samplemodel order thereversiblejump alogrithmisused
to alow moves within the Markov Chain which increase or
decrease model order. The reversible jump sampler uses a
Metropolis-Hastingsacceptanceformulato allow transitions
comprising two types of move: the splitting of one stateinto
two and the merging of two states into one. A traditional
Metropolis-Hastings sampler preserves detailed balance, so
ensuring the ergodicity of the Markov Chain becausethe old
and new model spacesareidentical. However, when moving
between different models, the associated parameter spaces
may be of differing dimension. Hence to preserve detailed
balance, the parameter vectors' dimensions are balanced by
padding with random variables. If moving between models
m1 and m2, whose parameter vectors are ¥,,,; and ¥,,,5,
then by extending these vectors by appending two random
vectors, e,,; and e,,,», their dimensions become matched.
To propose the new set of parameters, a continuous and
invertible mapping between thetwo extended vectorsis defi-
ned so that [¥,,,2, e2] = f([¥m1,em1]); thus, new para-
meters are generated by first drawing a random vector, then



applying such amapping. The mapping must be continuous
to allow the cal culation of its Jacobian determinent, required
in the Metropolis-Hastings acceptance ratio. When consid-
ering the splitting of state c into ¢1 and ¢2, this mapping will

ingeneral reduceto, 1.1, ¥ .5, em2] = f([Y., em1]), where
1. indicates the parameter vector associated with the likeli-

hood distribution for state c.

The mechanism for generating proposals adopted in this
paper is somewhat different to those used in [1] but still sat-
isfiesthe mapping requirement. Here, theregion assigned to
the state being split comprises pixelswhich have previously
been grouped (by the partial decouplingalgorithm) into smal-
ler clusters. Two of the largest V. of these clusters are ran-
domly selected to generate two sets of maximum likelihood
estimates of model parameters. These parameters are then
used to proposeanew segmentation of all pixelsthat arecur-
rently allocated to the existing, single state, into separate re-
gions forming the two new states. To meet the requirement
for amapping between extended parameter vectors, thus sat-
isfying the condition for detailed balance, a small random
perturbation is added to the estimate; thus, if ¢, and ¥,
arethe maximum likelihood (ML) parameter estimates gen-
erated from the first and second randomly selected clusters
and the random vector, e,,; can be expressed as two sub-
components, [e.1, e.2], then the new model parameters are
given by the mappings, 1., = 1, +ec1 and e, = 5 +
€.,

For thelsotropic casethegeneration of the ML parameter
estimatesisstraightforward. However, for the GMRF cal cu-
lating the ML parameter estimates based on data contained
within asingle cluster is not so trivial, hence a simpler ap-
proach is adopted: to maximize the pseudo-likelihood. To
achievethis, definethevector of statistics, c, whoseelements
are given by,
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ieC
where 7 is the index indicating the trandation correspond-
ing to the GM RF correlation parameter, 6,-. Then define the
matrix, D, whose elements are indexed by trandations 7
and > and are givenn by,

dryyry = Z[(yi+‘r1 - lu‘) + (yi*‘rl - :u‘)]
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henceif i denotesthe ML mean estimate for cluster C' and
n isthe cluster size,
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Thetwo sets of model parameter proposals may be used
as the basis for the re-segmentation of al pixels previously
allocated to state ¢ into multipleregions, assigned to both ¢1
and 2. The methodology used is simple and somewhat in-
tuitive: clustersarere-allocated using the partial decoupling
algorithm’s cluster coloring equation 3. However, a state of

ignorance exists when considering the conditioning of this
equation on each cluster’s neighborhood configuration. To
overcome this, al pixels of the split state are first assumed
to belong to another, different state. Next, clusters are al-
located to one of the new pair of statesin order of size, the
largest first, by Gibbs sampling using their conditional prob-
abilities. Thea gorithmthereforecoloursthelargest clusters
relatively independently but as the size of the clusters de-
creases and the gaps arefilled between the larger, already al-
located clusters, the clusters' coloring distributions become
conditioned to an ever greater extent on their local neigh-
bourhoods. The probability of proposing a re-segmentation
of the label field x to xT isgiven by,
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where C.. isthe set of all clustersallocated to class ¢, before
the proposed split, and the distributions, p(z; = k,i € C |
u,d, 3,1,,) are the the cluster coloring partial decoupling
conditional distributions, as given by equation 3.

When considering the opposite move, the combining of
two states into one, the reverse proposal probability (ident-
ical to that if proposing to split the clusters comprising the
new merged stateinto thetwo original states) must be calcul-
able. Becausethe order inwhichtheclustersarere-allocated
isdeterministic, i.e. based on cluster size only, the back cal-
culation of the reverse alocation probability is possible us-
ing the above equation.

Theresulting acceptanceratio for the splitting the region
labelled by classc intoregionslabelled by c1 and 2 isgiven
by min[1, R], where,
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The first term comprises the ratio of the posterior probabil-
ities after and before the proposed split and the remaining
terms are the probabilities of generating the proposals, de-
fined: ¢(c) and g(c1, ¢2) are simply the probabilities of se-
lecting the state or states to be split or combined, ¢(¢. |
.1,¥ .o, %) istheprobability of generatingnew model para-
meters when combining a state, ¢(¢.,,%., | u,y) isthat
when generating two sets of new parameters when splitting
one state into two and ¢(x, x ") isthat of re-segmentation.
The Jacobian determinant correspondingto the transform-
ation between extended parameter vectorsinthiscaseisunity
and isthus omitted from the expression. The acceptance ra-
tio for the combine moveis simply the inverse of the above.

5. RESULTS

Several sets of experimental results are shown, demon-
strating the application of the unsupervised al gorithmto both
isotropic and textured or GMRF models. Theannealing sche-
dules used for al experiments are linear. The MRF hyper-
parameter, 3 isset apriori to valuesbetween 1 and 1.8. The
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Original Image Horizontal Bond Prior ~ Vertical Bond Prior Final Segmentation Final Bondmap
Figure 1: 300 iteration segmentation experiment using an Isotropic MRF and a synthesized grayscale mosaic.

Original Image Horizontal Bond Prior ~ Vertical Bond Prior Final Segmentation Final Bondmap
Figure 2: 200 iteration segmentation experiment using a 4 parameter GM RF and a synthesized texture mosaic.
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Horizontal Bond Prior ~ Vertical Bond Prior Final Bondm

Original Image
Figure 3: 1000 iteration segmentation experiment using a 22 parameter GM RF and a Brodatz texture mosaic.

Final Segmentation

effect of atering its value between these margins proved in-

significant when considering the mosaic examplesgivenhere
but when considering more subtleimages, amorenoticeable
effect has been observed.

The original image together with horizontal and vertical
priors for the auxiliary bond variable hyper-parameters are
shown beside the final segmentation and its accompanying
bondmap. When observing the priors, the light coloured re-
gions correspond to areas of homogeneity between pixels,
thusgiving high bond prior probabilities. Thefinal bondmap
effectively comprises a negative of an image containing the
bordersbetween regions, with most internal pixelsbeing bon-
ded. The improvement in convergence over [1] is apparent
when observing the results for the Isotropic model, shown
in Figure 1: the number of iterations required to achieve a
similar quality of segmentation has fallen from 500 to 300.

6. CONCLUSION

In this paper we have presented unsupervised segmentation
algorithms for both Isotropic and GMRF's. The optimisa-
tion process, a single annealing process, is evaluated over
the combined model space by incorporatingreversiblejumps
into the Markov Chain to alow movement between models

of different order. The MRF sites are updated using partial-
decoupling to give improved mixing as the annealing pro-
cess passes through the critical temperature of the system.
The algorithm also facilitates the generation of efficient re-
versible jump proposals and provides a mechanism for in-
corporating determinstic methods to improve convergence.
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