
USING RECURSIVE LEAST SQUARE LEARNING METHOD
FOR PRINCIPAL AND MINOR COMPONENTS ANALYSIS

A. S. Y. Wong, K. W. Wong and C. S. Leung*
Dept. of EE, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

*Dept. of CS, University of Wollongon, Northfields Avenue, Wollongon, NSW 2522, Australia

Abstract

In combining principal and minor components analysis,
a parallel extraction method based on recursive least
square algorithm is suggested to extract the principal
components of the input vectors. After the extraction,
the error covariance matrix obtained in the learning
process is used to perform minor components analysis.
The minor components found are then pruned so as to
achieve a higher compression ratio. Simulation results
show that both the convergent speed and the
compression ratio are improved, which in turn indicate
that our method effectively combines the extraction of
the principal components and the pruning of the minor
components.

1. Introduction

The development of principle components analysis
(PCA) using neural networks has been grown from
single-neuron to multi-neuron, from sequential
extraction to parallel extraction, and from stationary
process to non-stationary process. Oja first developed a
learning rule [1] for a simple linear neuron. The rule is
a linearized version of the normalized Hebbian learning
rule. Sanger extended the rule to a multi-neuron
network [2] for the extraction of the first n principal
components of a stationary process. A major drawback
of these methods is that the updating step size is fixed at
a small value for accuracy of extraction, and so the
speed of convergence is low. Moreover, the methods
are suitable for stationary process only. In order to use
an adaptive step size, Bannour and Azimi-Sadjadi
introduced a recursive least square (RLS) method [3]
that initially train the first principal component, then the
second principal component, and finally the nth
principal component. This RLS method estimates the
best step size, i.e., the Kalman Gain for updating, thus
the convergent speed is increased. However, the
extraction of the principal components is still sequential.
Leung et al generalised the RLS method for non-
sequential extraction of principal components [4]. Their
method is highly adaptive for non-stationary process.
Although significant results have been obtained in the

studies of PCA using RLS training method [3,5], their
conjunction with minor components analysis (MCA) has
not been discussed. In this paper, we combine the
training of the network and the pruning of the minor
components as a whole. In order to improve the
convergence, a modified RLS algorithm is suggested for
PCA. After the extraction of the principal components,
the error covariance matrix, P(k), obtained in the RLS
learning procedures is used in the analysis of the minor
components.

This paper is organised as follows. In Section 2, the
modified RLS algorithm is introduced. The details of
using RLS method for PCA and MCA are described in
Section 3. Simulation results are reported in Section 4
to show the effectiveness of our algorithm; and finally, a
conclusion is drawn in the last section.

2. The modified RLS-based Training Algorithm

Consider a fully connected two-layer neural network
that operates in auto-association mode. If there are
equal numbers of neurons in the input and output layers,
and the number of hidden neurons is fewer than that in
the input or output layer, then the bottleneck hidden
layer will force the network to compress the input with
fewer parameters. This means that the network will
extract the principal components of the input. Owing to
the hidden-layer representation, identical mapping from
input to output is generally not achievable. The mean-
squared-error in the reconstruction is what we wish to
minimize.

Consider a general feedforward neural network with L
layers (including the input and output layers) and there
are Nl neurons in the lth layer. If the network is trained
by the input vectors a(t) with the desired output d(t) set
equal to a(t), the operation of the network is
characterised by,

a t f w t a tl j l j i l i
i

Nl

+
=

=






∑1

1
, , , ,() () () , (1)

e t d t a tL() () ()= − (2)

where f (⋅) is the sigmoid function f x
e x

() =
+ −

1

1
,

al,i(t) is the output of the neuron Al,i (the ith neuron in the
lth layer) in time t,

wl,j,i(t) is the weight connected from the ith neuron in the
lth layer to the jth neuron in the (l+1)layer,

e(t) is the error in the reconstruction, and
aL(t) is the output of the network at time t.

Iiguni and Sakai have developed a simplified RLS
method [6] to estimate the weights of a multi-layer
neural network. Their method only updates the weights
that connect from all the neurons in the lth layer to the
jth neuron in the (l+1)th layer in one iteration. Without
deriving the equations again, the estimation of wl,j(t) is
achieved by the following set of equations,

[]K t P t H t I H t P t H tl j l j l j l j l j l j
T

, , , , , ,() () () () () ()= − + −
−

1 1
1

(3)

[]w t w t K t d t a tl j l j l j L, , ,() () () () ()= − + −1 (4)

P t P t K t H t P tl j l j l j l j l j, , , , ,() () () () ()= − − −1 1 (5)

where H tl j, () is defined as ∂
∂

a t

w t
L

l j w w t

()
(), (= −1)

,

Pl,j(t) is the error covariance matrix,
Kl,j(t) is the Kalman gain, and
wl,j(t) is the column vector []w t w t w tl j l j l j N

T

l, , , , , ,() () ()1 2 �

In updating wL-1(t), ([]w t w t w tL L L N

T

l− − −11 12 1, , ,() () ()�), if we

take a closer look into the matrices HL-1 and the PL-1,
they are in the form,

[]H H H HL L L L NL− − − −=1 11 1 2 1, , ,�

=



























−

−

− = −

∂
∂

∂
∂

∂
∂

a t

w t
a t

w t

a t

w t

L

L

L

L

L

L N w w tL

()

()

()

,

,

, ()

1 1

1 2

1 1

0 0

0

0

0 0

()

()

()

�

�

� �

�

(6)

P

P

P

P

L

L

L

L NL

−

−

−

−

=



















1

11

12

1

0 0

0

0

0 0

,

,

,

�

�

� �

�

 (7)

Since the off-diagonal elements in equations (6) and (7)
are all zeroes, the estimation of wL-1,j(t+1) depends only
on aL,j(t). The computational complexity of updating
PL-1(t+1) and wL-1(t+1) is exactly the same as that of

()O P tL j
j

NL

−
=

+∑ 1
1

1, () and ()O w tL j
j

NL

−
=

+∑ 1
1

1, () respectively.

Therefore, in order to achieve a faster convergence, we
suggest that wL-1 is updated simultaneously in one

iteration rather than separately in NL times. By using
this modification, the weight vectors wL-1 is updated
locally in a layer level, and its estimation is more
accurate than updated in a neuron level. Hence, without
increasing the computational complexity, the convergent
speed is improved. Moreover, this method extracts the
principal components in a non-sequential way, i.e., the
extraction of the ith component does not depend on the
convergence of the (i-1)th component.

3. MCA with RLS Method

After the weight vectors have been converged to the
optimal values or up to a desired degree of accuracy, the
first n principal components are extracted in the hidden
layer. Then the error covariance matrix obtained during
the training process is used for minor component
analysis. Based on the findings of Leung et al [7], the
inverse of the error covariance matrix is approximately
equal to the Hessian matrix of the network being trained.
It can be used to measure the change in energy due to
the changes in weights. After k training patterns are
presented, the energy function that we are interested is,

E w e t w P w
t

k
T() [()] ()= +

=

−∑1

2

1

2
0

1

1Ε (8)

where e(t) = d(t)-h(w(t), a(t)), and h(⋅) is the function
describing the network, and

P I M()0 = δ , with δ > 0, and M N Nll

L

l= =
−

+∑ 1

1

1

If w w= 0 is the optimum, then
∂

∂
E w

w w w

()
= =

0
0

From [7], the measurement of the change in energy due
to the changes in weights is,

∆ ∆ ∆E w P k wT= −1

2
1() (9)

and the sensitivity of the energy with respect to the
removal of each weight is,

∆ E w k qi i ii= 1

2
2() (10)

where qii is the ith diagonal element of the inverse of the
matrix P(k).

In MCA, the removal of some minor components is
much more important than the pruning of some
particular weights. If a tl ' () is the compressed

representation of the input a(t), then the energy change
after the removal of ()a tl j' ,

 is,

∆El j' , = ×1

2

 w k q k w k q kl j i l j ii
i

N

l y j
y

N

l y jj

l l

' , , ' , , ', , ', ,() () () ()
' '

− −
= =

− +

∑ ∑+








1

2
1

1 1

2
1 1

 (11)

where ql j ii' , ,−1
 and ql y jj' , ,

 are the ith and jth diagonal

elements of Pl j' ,−
−

1
1 and Pl y' ,

−1 respectively.

The first term in the r.h.s. of equation (11) is the energy
change after the removal of wl j' ,−1

 (1 1≤ ≤ −i Nl '
) while

the second term is that for wl y j' , , ()1 1≤ ≤ +y Nl '
. The

magnitude of ∆El j' ,
 reflects the importance of the

extracted component, ()a tl j' ,
, that representing the

input vector a(t). If ∆El j' ,
 is small enough, then the

effect of removing the neuron A l j', can be ignored. This

minor component is pruned away so as to achieve a
higher compression ratio. For two-layer PCA networks,
l L' = − 1. So wl '

 is updated in layer level and its

estimation is more accurate than that of wl ' −1 . Thus, the

second term in equation (11) shows the ranking of the
components more precisely. We simplify the change of

energy as ∆E w k q kl j l y j l y jj
y

Nl

' () ()' , ' , , ' , ,

'

=
=

+

∑ 2

1

1
. Moreover,

the computational complexity of Pl '
−1 is ()O N Nl l' '+ 1

2

which is smaller than that of Pl ' −
−

1
1 , (which is

()O N Nl l' ' −1
2

), as Nl ' is smaller than Nl' −1 and Nl'+1

for compression ratio greater than one. In short, our
pruning algorithm for MCA is,

1) Sort ∆E l j' ' ,
 in ascending order as ∆E l s' ' ,

.

2) Prun away all Al s' , for 1 ≤ ≤s S, where S is

determined from ∆ ∆E El s
s

S

l j
j

Nl

' '' , ' ,

'

= =
∑ ∑<

1 1

λ , with

0 1≤ ≤λ .

In addition, the error covariance matrix is a block
diagonal matrix with many zeroes. Therefore, the
computation of the inverse of a huge matrix is avoided
in the pruning procedures. This makes the combination
of training and pruning more effectively. If bias terms
are involved in the neural networks, the above
derivation of the pruning algorithm is still valid because
the bias vectors always carry heavy weights that can
rarely be pruned.

4. Simulation Results

To show the performance of the proposed method, the
test image Lenna with 512×512 pixels and 256 gray
levels is used. The image is partitioned into a set of
non-overlapping b×b blocks which are reshaped into
vectors of size b2×1. The training vectors are then

randomly fed into a neural network with b2 inputs, N2

hidden neurons and b2 output neurons. The activation
function used in the two layers are the nonlinear sigmoid
function. Two bias vectors are also used for faster
convergence. The pixel value is scaled to the range
from 0 to 0.9 in order to avoid infinite growth of the
weights. To start the training, the weights and the biases
are randomly set between -0.5 and +0.5, and the error
correlation matrix were initialised to 100*IMxM. Where
M N Nll

L

l= +
=

−
+∑ ()

1

1

11 here.

The convergent speed of the proposed algorithm,
(Layer-level update (LLU) method, which updates wL-1

locally in layer level) is compared with that of the
Neuron-level update (NLU) method (updates wL-1

locally in neuron level). To train all the neurons in the
network once, the LLU method requires NL-1+1
iterations, while the NLU method needs NL-1+NL

iterations; but the overall computation complexities are
the same. Fig. 1 shows the signal-to-noise ratio
(SNR=20log10 Signal Power/Noise Power) of the image
reconstruction after training through the network for a
number of times. It shows that the reconstruction SNR
of the LLU method is higher than that of the NLU
method. Hence, it implies that the LLU method
converges faster than the NLU method.

To show the effectiveness of our pruning algorithm, the
network is trained with different input sizes and
compression ratios. The number of iterations is fixed to
2× sample size so that almost every sample has been
trained twice. Table 1 summarises the reconstruction
SNR with and without pruning. As observed from cases
1, 2 and 3, it is found that the reconstruction is better if
the network is trained for more iterations. The
reconstructed image after pruning in cases 2 and 3 are
shown in Fig. 3 and 4 respectively. If the network is
trained with higher initial compression ratios (cases 4
and 5), the reconstruction quality do not degrade too
much. This shows that the training algorithm has fast
convergent speed. As shown in the last two columns of
Table 1, for whatever ways we compress the inputs,
minor components are successfully pruned (loss in
reconstruction is neglectable) to achieve a higher
compression ratio.

In real-time learning, networks are usually only trained
to an acceptable reconstruction accuracy with limited
number of iterations and considerably smaller
compression ratio. Therefore, weights are not converged
properly and quite a number of the extracted
components are not significant (as in case 3). In our
approach, minor components found are successfully
removed without much degrade in the reconstruction
quality.

5. Conclusion

By using the fact that the derivative of the output of the
ith output neuron with respect to the weights connected
to the jth output neuron (i ≠ j) is zero, a modified RLS
method is proposed so that all the weights connected to
the output layer are updated simultaneously in one
iteration. With such modification, the convergent speed
is improved without increase in computational
complexity. After the network is trained, the error
covariance matrix obtained in the RLS method is used
for minor components analysis. Minor components
found are then pruned to achieve a higher compression
ratio. Simulation results show that we successfully
combined the extraction of principal components and
the pruning of minor components as a whole in an
effective way.

Fig.1 Reconstruction SNR of the LLU and NLU methods

 50 100 150 200 250 300 350 400 450 500
10

12

14

16

18

20

22

24

Number of iterations

dB

LLU

NLU

Table 1. SNR of the reconstruction with and without pruning

 1,2 The results of the reconstruction are show in Fig. 3 and Fig. 4 respectively.
 N2 is the number of hidden neurons.

Fig. 2 The original Lenna image Fig. 3 The reconstructed image with 23.71dB Fig. 4 The reconstructed image with 21.96dB

References

[1] Oja E., A simplified neuron model as a principal
component analyzer. Journal of Mathematics and
Biology. 15, 267-273, 1982.

[2] Sanger T. D., Optimal unsupervised learning in a single-
layer linear feedback neural network. Neural Networks. 2,
459-473, 1989.

[3] Bannour S. and Azimi-Sadjadi M. R., Principal
component extraction using recursive least squares
learning. IEEE Trans. Neural Networks. 6, 457-469,
1995.

[4] Leung C. S., Wong K.W. and Tsoi A. C., Recursive
algorithms for principal component extraction. Network:
Computation in Neural Systems, vol 8, 3, 323-334, 1997.

[5] Kung S. Y. and Diamantaras K. I., A neural network
learning algorithm for adaptive principal component
extraction. Proc. ICASSP, 861-864, 1990.

[6] Iiguni Y. and Sakai H., A real-time learning algorithm for
a multilayered neural network based on the extended
Kalman filter. IEEE Trans. on Signal Processing. 40,
959-966, 1992.

[7] Leung C. S., Wong K. W., Sum J. and Chan L. W., On-
line training and pruning for the recursive least square
algorithms. Electronics Letter. 32, 2152-2153, 1996.

in- N2 iterat-
SNR of the reconstruction with

different numbers of minor components pruned /dB loss
increase in
compress-

put ion 0 1 2 3 4 5 6 7 8 9 in dB ion ratio
36 9 14450 24.69 24.66 -- -- -- -- -- -- -- -- 0.03 12.5%
64 16 8192 23.77 23.77 23.711 -- -- -- -- -- -- -- 0.06 14.28%

100 25 5202 22.17 22.16 22.16 22.16 22.14 22.10 22.05 21.96 21.96 21.962 0.21 56.25%
64 8 8192 22.21 22.21 21.06 -- -- -- -- -- -- -- 0.15 33.33%

100 15 5202 22.26 22.22 22.12 -- -- -- -- -- -- -- 0.14 15.38%

