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Abstract studies of PCA using RLS training method [3,5], their
conjunction with minor components analysis (MCA) has
In combining principal and minor components analysisjot been discussed. In this paper, we combine the
a parallel extraction method based on recursive leasining of the network and the pruning of the minor
square algorithm is suggested to extract the principebmponents as a whole. In order to improve the
components of the input vectors. After the extractiorgonvergence, a modified RLS algorithm is suggested for
the error covariance matrix obtained in the learnin@CA. After the extraction of the principal components,
process is used to perform minor components analystee error covariance matri®(k), obtained in the RLS
The minor components found are then pruned so aslearning procedures is used in the analysis of the minor
achieve a higher compression ratio. Simulation result®mponents.
show that both the convergent speed and the
compression ratio are improved, which in turn indicat&his paper is organised as follows. In Section 2, the
that our method effectively combines the extraction ahodified RLS algorithm is introduced. The details of
the principal components and the pruning of the minarsing RLS method for PCA and MCA are described in
components. Section 3. Simulation results are reported in Section 4
to show the effectiveness of our algorithm; and finally, a
conclusion is drawn in the last section.
1. Introduction

The development of principle components analysig. The modified RLS-based Training Algorithm

(PCA) using neural networks has been grown from

single-neuron to  multi-neuron, from sequentialConsider a fully connected two-layer neural network
extraction to parallel extraction, and from stationaryhat operates in auto-association mode. If there are
process to non-stationary process. Oja first developedequal numbers of neurons in the input and output layers,
learning rule [1] for a simple linear neuron. The rule iand the number of hidden neurons is fewer than that in
a linearized version of the normalized Hebbian learningpe input or output layer, then the bottleneck hidden
rule. Sanger extended the rule to a multi-neurdayer will force the network to compress the input with
network [2] for the extraction of the first principal fewer parameters. This means that the network will
components of a stationary process. A major drawbaektract the principal components of the input. Owing to
of these methods is that the updating step size is fixedthé hidden-layer representation, identical mapping from
a small value for accuracy of extraction, and so thieput to output is generally not achievable. The mean-
speed of convergence is low. Moreover, the methodsjuared-error in the reconstruction is what we wish to
are suitable for stationary process only. In order to usginimize.

an adaptive step size, Bannour and Azimi-Sadjadi

introduced a recursive least square (RLS) method [8lonsider a general feedforward neural network with
that initially train the first principal component, then thdayers (including the input and output layers) and there
second principal component, and finally theh areN, neurons in théh layer. If the network is trained
principal component. This RLS method estimates they the input vectora(t) with the desired outpud(t) set
best step size, i.e., the Kalman Gain for updating, thesjual to a(t), the operation of the network is
the convergent speed is increased. However, tlebaracterised by,

extraction of the principal components is still sequential. M 0
Leung et al generalised the RLS method for non- 8., (=10 w;; (Da, (9 1)
sequential extraction of principal components [4]. Their 1= 0
method is highly adaptive for non-stationary process. e(t)=d()- g (9 )

Although significant results have been obtained in the
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wheref (lis the sigmoid functiorf(x) = —
1+e

v
a(t) is the output of the neuron Atheith neuron in the
Ith layer) in timet,
w;j;(t) is the weight connected from the neuron in the
Ith layer to theth neuron in thel¢1)layer,
e(t) is the error in the reconstruction, and
a, (t) is the output of the network at tirhe

liguni and Sakai have developed a simplified RL

iteration rather than separately My times. By using
this modification, the weight vectors; ; is updated
locally in a layer level, and its estimation is more
accurate than updated in a neuron level. Hence, without
increasing the computational complexity, the convergent
speed is improved. Moreover, this method extracts the
principal components in a non-sequential way, i.e., the
extraction of théth component does not depend on the
&Lonvergence of the-()th component.

method [6] to estimate the weights of a multi-layer
neural network. Their method only updates the We|gh5s. MCA with RLS Method

that connect from all the neurons in thie layer to the

jth neuron in thel¢1)th layer in one iteration. Without

deriving the equations again, the estimatiorwgft) is
achieved by the following set of equations,
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where H, . (t)is defined asf2 (V)
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w=w(t-1)

Py;(t) is the error covariance matrix,
Ky;(t) is the Kalman gain, and .
wi(t) is the column vecto[w,j,l(t) w; (0 - v,vle(l)]

In updating w_4(t), ([V\Lu(t) W LD - V\Lm(ﬁ]T), if we

take a closer look into the matricek_; and theP,,,
they are in the form,
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Since the off-diagonal elements in equations (6) and (Pprticular weights.

After the weight vectors have been converged to the
optimal values or up to a desired degree of accuracy, the
first n principal components are extracted in the hidden
layer. Then the error covariance matrix obtained during
the training process is used for minor component
analysis. Based on the findings of Leustgal [7], the
inverse of the error covariance matrix is approximately
equal to the Hessian matrix of the network being trained.
It can be used to measure the change in energy due to
the changes in weights. Aft&rtraining patterns are
presented, the energy function that we are interested is,

EWF%;HMH%WWMW ®

wheree(t) = d(t)-h(w(t), a(t)), andh(Qis the function
describing the network, and
P©)=dl,,,withd>0,and M = ZIL:NI N,

JE(w)

If W=, is the optimum, them = |u=, = 0

From [7], the measurement of the change in energy due
to the changes in weights is,

1
AE :EAWT P(K) *Aw 9)
and the sensitivity of the energy with respect to the
removal of each weight is,
AE, :%Wi(k)zqii (10)
whereg; is theith diagonal element of the inverse of the
matrix P(K).

In MCA, the removal of some minor components is
much more important than the pruning of some
If a.(t) is the compressed

are all zeroes, the estimationwf.;;(t+1) depends only representation of the inpaft), then the energy change
onaj(t). The computational complexity of updatingafter the removal Ofir,j (1) is,

P(t+1) andw_,(t+1) is exactly the same as that of

Ny N, .
ZJ O(PL Lt 1)) and Z O(WL-l,, (t+ 1)) respectively.
1= IE

AEI',j = %X

-1 N+ 0
2 2
Therefore, in order to achieve a faster convergence, we Ezlwl'—l,ij (K7 q gy (R + Zl Wy (B a5 ( k% (11)
suggest thatw,; is updated simultaneously in one - g



where On i and Q. are thdth and jth diagonal randomly fed into a neural network with? inputs, N,
hidden neurons an? output neurons. The activation
function used in the two layers are the nonlinear sigmoid

The first term in the r.h.s. of equation (11) is the energynction. Two bias vectors are also used for faster

change after the removal @f._, . (1<i<N,_,)while Convergence. The pixel value is scaled to the range
! from O to 0.9 in order to avoid infinite growth of the

weights. To start the training, the weights and the biases
magnitude of AE, | reflects the importance of the are randomly set between -0.5 and +0.5, and the error
correlation matrix were initialised to 10@%y. Where

M =3 (N + DN, here.

elements of|2>|,_lj‘1 and P, y‘l respectively.

the second term is that fcwl.’y’j (15 y< N|'+1)' The

extracted componenta, ;(t), that representing the
input vectora(t). If AE,, is small enough, then the

effect of removing the neuroA, . can be ignored. This The convergent speed of the proposed algorithm,
! (Layer-level update (LLU) method, which updates;

minor componeqt IS pruned away so as to aCh'evelc?cally in layer level) is compared with that of the
higher compression ratio. For two-layer PCA networksye ron-level update (NLU) method (updates
'=L-1. Sow, is updated in layer level and its locally in neuron level). To train all the neurons in the
estimation is more accurate than that®f . Thus, the network once, the LLU method requirehl ;+1

second term in equation (11) shows the ranking of titerations, while the NLU method needs ;+N

components more precisely. We simplify the change #gerations; but the overall computation complexities are
N1 the same. Fig. 1 shows the signal-to-noise ratio

energy aspE', = Z W, (K?q, ; (K- Moreover, (SNR=20log, Signal Power/Noise Power) of the image

y=1 5 reconstruction after training through the network for a
the computational complexity df. ~* is O(NI'+1 N, ) number of times. It shows that the reconstruction SNR
of the LLU method is higher than that of the NLU
) method. Hence, it implies that the LLU method
O(N, N, )), as N, is smaller thanN,_, and N.,,  converges faster than the NLU method.

which is smaller than that ofP._,™*, (which is

for compression ratio greater than one. In short, our . . .
pruning algorithm for MCA is, To show the effectiveness of our pruning algorithm, the

network is trained with different input sizes and

1) Sort AE',.; inascending order aSE', . . compression ratios. The number of iterations is fixed to

2x sample size so that almost every sample has been

2) Prun away allp, ; for 1< s< S, whereSis trained twice. Table 1 summarises the reconstruction
. s Ny . SNR with and without pruning. As observed from cases
determined fromz AE', <A Z AE,, » With 1, 2 and 3, it is found that the reconstruction is better if
5=t 1=t the network is trained for more iterations. The

0<As<l reconstructed image after pruning in cases 2 and 3 are

shown in Fig. 3 and 4 respectively. If the network is
In addition, the error covariance matrix is a blockrained with higher initial compression ratios (cases 4
diagonal matrix with many zeroes. Therefore, th@nd 5), the reconstruction quality do not degrade too
computation of the inverse of a huge matrix is avoideghych. This shows that the training algorithm has fast
in the pruning procedures. This makes the combinatig@nvergent speed. As shown in the last two columns of
of training and pruning more effectively. If bias termsraple 1, for whatever ways we compress the inputs,
are involved in the neural networks, the aboveninor components are successfully pruned (loss in

derivation of the pruning algorithm is still valid becauseeconstruction is neg|ectab|e) to achieve a h|gher
the bias vectors always carry heavy weights that cadmpression ratio.

rarely be pruned.

In real-time learning, networks are usually only trained

to an acceptable reconstruction accuracy with limited
4. Simulation Results number of iterations and considerably smaller

compression ratio. Therefore, weights are not converged
To show the performance of the proposed method, t"p?operly and quite a number of the extracted
test image Lenna with 5%312 pixels and 256 gray components are not significant (as in case 3). In our
levels is used. The image is partitioned into a set @pproach, minor components found are successfully
non-overlappingbxb blocks which are reshaped intoremoved without much degrade in the reconstruction
vectors of sizeb’x1. The training vectors are thenquality.
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Table 1. SNR of the reconstruction with and without pruning

SNR of the reconstruction with increase in
in- [ N, | iterat- different numbers of minor components pruned /dB lpsscompress-
put ion 0 1 2 3 4 5 6 7 8 9 in dB ion ratio
36| 9| 14450 24.69 24.66 -- - - - -- - - -- 0.03 12.5P6
64| 16| 8192] 23.79 2377 23%] -- - - - - - - 0.06 14.28%
100| 25| 5202 22.17 22.1p 2216 2216 22[14 2210 2205 21.96 21.96 410981 56.25%
64| 8| 8192 22.21 22.21 21.0 - - - -- - - -- 0.11 33.33%
100| 15| 5202 22.2 22.2p 22.12 - - - -- - - -- 0.14 15.38%

1,2 The results of the reconstruction are show in Fig. 3 and Fig. 4 respectively.
N, is the number of hidden neurons.

Fig. 2 The original Lenna image Fig. 3 The reconstructed image with 23.71dB  Fig. 4 The reconstructed image with 21.96dB




