
SPEECH COMPRESSION BASED ON EXACT MODELING AND STRUCTURED TOTAL
LEAST NORM OPTIMIZATION

Philippe Lemmerling, Ioannis Dologlou, and Sabine Van Huffel

ESAT Laboratory, Department of Electrical Engineering, Katholieke
Universiteit Leuven, Kardinaal Mercierlaan 94, 3001 Leuven, Belgium

philippe.lemmerling@esat.kuleuven.ac.be

ABSTRACT

We present a new speech coding algorithm, based on an
all-pole model of the vocal tract. Whereas current Auto
Regressive (AR) based modeling techniques (e.g. CELP,
LPC-10) minimize a prediction error, which is considered to
be the input to the all-pole model, our approach determines
the closest (inL2 norm) signal, which exactly satisfies an
all-pole model. Each frame is then encoded by storing the
parameters of the complex damped exponentials deduced
from the all-pole model and its initial conditions. Decoding
is performed by adding the complex damped exponentials
based on the transmitted parameters.
The new algorithm is demonstrated on a speech signal. The
quality is compared with that of a standard coding algorithm
at comparable compression ratios, by using the segmental
Signal-to-Noise Ratio (SNR).

1. INTRODUCTION

This paper presents a new method for speech coding. It be-
longs to the class of vocoders which use an all-pole model
for modeling the vocal tract. The resulting minimum phase
model is sufficient for preserving the exact magnitude spec-
trum, whereas phase information is lost [6]. Most Linear
Predictive Coding (LPC) based techniques make the addi-
tional assumption that the input to the Auto Regressive (AR)
model is white noise, represented by the vectore. If we rep-
resent the speech signal by a vectors and assume a model of
orderL, the modeling of theith frame of the speech signal
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can be recasted as the following optimization problem:

min
a(l);l=1;::: ;L

iNX

j=1+(i�1)N

(e(j))2 where

s(k)� e(k) =

LX

l=1

a(l)s(k � l); (1)

k = 1 + (i� 1)N + L; : : : ; iN

whereN equals the number of samples per frame,a(l); l =
1; : : : ; L are the so-called prediction coefficients. Note that
we adopt a Matlab-like notation, wherev(i) indicates the
ith element of vectorv, andv(i : j) represents the subvec-
tor of v, starting at theith element and ending at thejth
element of vectorv.
A closer look at (1) reveals that the problem is in fact a
Least Squares (LS) problem. This is the basic scheme used
by well-known LPC based algorithms such as LPC-10 [13]
or CELP [4] (in practice however, the prediction coefficients
are not determined by solving (1), but by using an equivalent
autocorrelation method). At the receiver side, the speech is
synthesized using the all-pole model based on the transmit-
ted model parameters. In the case of a voiced frame, the
input to the filter will be a periodic pulse with the transmit-
ted pitch frequency, while in the unvoiced case the input is
white noise. In the case of CELP the excitation is chosen
out of a series of standardized noise-like sequencies in or-
der to obtain the best synthesis.
Our new approach is still based on the all-pole model but
instead of solving (1), we solve the following problem for
theith frame:

min
�s(j);j=1+(i�1)N;::: ;iN;

a(l);l=1;::: ;L

iNX

j=1+(i�1)N

(�s(j))2 (2)

such thats(k)+�s(k) =

LX

l=1

a(l)(s(k�l)+�s(k�l));

k = L+ 1 + (i� 1)N; : : : ; iN:



So instead of minimizing a prediction error, as in (1), we de-
termine for each samples(k) a correction�s(k), such that
the corrected signals(k) + �s(k) exactly satisfies an AR
model, with the correction as small as possible inL2 norm.
In the following section we describe the vocoder based on
our new approach, by developing the kernel algorithm. The
third section presents numerical results and a comparison
with standard methods, using a speech signal. We discuss
the quality performance and the efficiency of the new ap-
proach. We conclude with a summary and some further re-
search.

2. DESCRIPTION OF THE VOCODER

As already mentioned in the introduction, the kernel prob-
lem of our new approach can be formulated as in (2). It is
easy to recast this optimization problem in a matrix frame-
work:

min
�s(j);j=1+(i�1)N;::: ;iN;

a(l);l=1;::: ;L

iNX

j=1+(i�1)N

(�s(j))2 (3)

such that(S +�S)a = b+�b:

If we use the convention that the vectors(1+(i�1)N : iN)
can be read from the first row and the first column of the
Hankel matrix[b S] (and the same convention for�s(1 +
(i�1)N : iN) and[�b �S]), by starting in the upper right
corner and ending in the lower left corner, the matricesS,
�S and the vectorsb, �b anda can readily be determined
by comparing (2) with (3). Observe that both the matrices
[b S] and[�b �S] have a Hankel structure.
Problem (3) is an extension of the LS approach in (1). First
of all (3) allows also corrections on the left hand side of the
equations in (1) and secondly, the error matrix[�b �S]
is forced to have the same Hankel structure as the original
data matrix[b S]. In fact, (3) can be seen as the structured
extension of the Total Least Squares (TLS) approach [15].

Problem formulation (3) has been the subject of many
papers in recent years and is known under different names
such as Structured Total Least Squares (STLS) problem [7],
Structured Total Least Norm (STLN) problem [11][14] or
also Constrained Total Least Squares (CTLS) problem [1][2].
As explained in [9] and [10] all these different approaches
are equivalent. In our application we will pursue the STLN
approach, since at this time, it is the computationally most
effective way to tackle problem (3). It is not our goal to give
an extensive description of the STLN algorithm, used here
and outlined in [14] as algorithm STLNB. The differences
between our implementation and the algorithm described in
[14] can be summarized as follows:

� we replace the weighting method in Step 2(a) [14]
of algorithm STLNB by the equivalent equality con-
strained LS problem.

� the stop criterion is either based on the norm ofkr̂k2 �
k(S+�S)a� (b+�b)k2 or the number of iterations
is kept fixed, as explained further on.

We will now briefly describe some aspects of the STLN al-
gorithm and the related difficulties.
As can be seen from (3), we have to deal with a quadratic
objective function and nonlinear equality constraints (the
nonlinearity resides in the term�Sa). This problem is
solved by an iterative algorithm. In each iteration the non-
linear equality constraints are linearized around the current
iteration point and an equality constrained LS problem is
solved. Since we solve a nonlinear optimization problem,
the use of good starting values is of utmost importance for
convergence within a reasonable amount of time. A method
which yields very good starting values in this respect is
HTLS [16]. This is a suboptimal (it does not give the closest
fit) subspace based harmonic retrieval method, that approxi-
mates the signals by a sum ofL complex damped exponen-
tials. Straightforward calculations based on the parameters
of these exponentials yield the initiala and[�b �S]. After
applying STLN with the previously mentioned initial val-
ues, we could encode each frame by storing the vectora
and the firstL values ofs + �s for that particular frame.
Since this procedure will lead to large reconstruction errors
at the receiver side, we apply HTLS to the obtained data
matrix [b+�b S +�S]. Since the corrected datas+�s
is rank deficient and real, HTLS gives an exact fit and the
resulting2L parameters of the complex damped exponen-
tials can be used for encoding. The vocoder analysis and
synthesis algorithms, applied to theith frame, can thus be
summarized as follows:

Vocoder Analysis Algorithm

Input: ith frame of the speech signal:s(k),
k = 1 + (i � 1)N; : : : iN , with N the number of samples
per frame,L the order of the AR filter
Output: fk; dk; ak; pk; k = 1; : : : ; L=2, representing the
frequencies, dampings, amplitudes and phases of the com-
plex damped exponentials, satisfying

PL=2
k=1 ckz

j
k + ckz

j
k =

s(j) + �s(j); j = 1 + (i� 1)N; : : : ; iN .

Step 1: Initialize�s(j); j = 1 + (i� 1)N; : : : ; iN and
a(l); l = 1; : : : ; L with the result of HTLS
applied tos(1 + (i� 1)N : iN).

Step 2: Solve STLN problem (3)
Step 3: Apply HTLS to

s(1 + (i� 1)N : iN) + �s(1 + (i� 1)N : iN),
to extractfk; dk; ak; pk; k = 1; : : : ; L=2

Vocoder Synthesis Algorithm

Input: fk; dk; ak; pk; k = 1; : : : ; L=2, representing the fre-
quencies, dampings, amplitudes and phases of the complex



damped exponentials.
Output: s(1 + (i� 1)N : iN) + �s(1 + (i� 1)N : iN),
the rank-deficient speech signal that lies closest to
s(1 + (i� 1)N : iN) in L2 norm.

Step 1:s(j) + �s(j) 
PL=2

k=1 ckz
j
k + ckz

j
k,

j = 1 + (i� 1)N; : : : ; iN .

With ck = ake
(
p
�1pk), zk = e(2

p
�1�fk+dk)�t, �t being

the sampling interval andx indicating the complex conju-
gate ofx. We note that, as described in [5], it is possible
to merge Step 2 and Step 3 of the vocoder analysis algo-
rithm. This increases the efficiency by replacing the SVD
of Step 3 by a QR factorization. However, the overall effect
on the number of computations would be marginal, since
the contribution of Step 3 in the total amount of work is mi-
nor compared to the iterative Step 2. The quantization of
the parameters will be discussed in the following section.

3. EXPERIMENTATION-TESTING

In this section we compare the exact AR modeling approach
to the CELP standard algorithm, applied to a speech sig-
nal sampled at8kHz, using8 bits per sample. It contains
14749 samples (approximately 2 seconds of speech) and is
a phonetically balanced French sentence, uttered by a male
speaker. The sentence is an enumeration of geographical
places:

Paris, Bordeaux, Le Mans, Saint-Leu, L´eon, Loudun

which has the following phonetic transcription (according
to the International Phonetic Association’s rules [8]):

paKi, b=Kdo, l�m�̃, s̃� lø, le=̃, ludœ̃

For the CELP algorithm, we used a Fortran implementation
of the Federal Standard 1016 4800 bps CELP vocoder [4].
For the exact AR modeling approach we use the vocoder al-
gorithm described in section 2. We set the frame lengthN
to 301, the model orderL to 12 and fix the number of itera-
tions of STLN to10. We quantize the parameters obtained
in step 3 of the vocoder analysis algorithm as follows:12
bits per frequency,7 bits per damping,7 bits per amplitude
and6 bits per phase. We remark that this is a very simple
bit allocation scheme and could easily be improved by us-
ing more sophisticated schemes. These settings lead to the
following compression ratios:
8bits=sample�8000(samples=sec)

4800(bits=sec) � 13:33 for CELP and
301(samples=frame)�8(bits=sample)

24(parameters=frame)�8(bits=parameter) � 12:54 for STLN.
Both STLN and HTLS are coded in Matlab. In order to
avoid inadmissable long computation times, we implemented
the LAPACK subroutine DGGLSE [3] as a MEX-file for the
kernel routine of STLN (the above mentioned equality con-
strained LS).
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Figure 1:The upper part of the figure shows the FFT mag-
nitude spectrum ofs(500 : 755) (full line), the FFT mag-
nitude spectrum of the CELP result (dashed line) and the
FFT magnitude spectrum of the STLN result (dotted line).
The lower part of this figure shows the absolute value of the
difference between the FFT magnitude spectrum of the orig-
inal signal and the FFT magnitude spectrum of the CELP
result (dashed line), together with the absolute value of the
difference between the FFT magnitude spectrum of the orig-
inal signal and the FFT magnitude spectrum of the STLN
result (dotted line).

To assess the quality of the compressed speech, we use the
following segmental SNR definition:

SNRseg � 10log10
1

F

FX

j=1

Pp
i=1(sj(i))

2

Pp
i=1(sj(i)� ŝj(i))2

; (4)

whereF represents the number of frames,p is the frame
length used for averaging,sj = s(1+(j � 1)p : jp), ŝj =
ŝ(1+(j�1)p : jp) andŝ represents the synthesized signal.
Herep is chosen equal to60 but the result is rather insen-
sitive with respect top. For the CELP result , this gives
a SNRseg = 12:8dB . This value results from a com-
parison between the highpass filtered input and the non-
postfiltered output (standard CELP applies at the end an
adaptive postfilter routine to reduce perceptual coder noise).
An upperbound for the quality of the STLN approach, is
obtained when no quantization of the parameters occurs.
This yields a segmental SNR of17:5dB. With the sim-
ple bit allocation scheme described above, we still obtain
SNRseg = 16:4dB. The upper part of figure 1 shows the
magnitude spectrum of the FFT ofs(500 : 755) (full line,
this corresponds to the “a” in “Paris”) , the corresponding
CELP result (dashed line) and the corresponding STLN re-
sult (dotted line). The lower part of figure 1 shows the ab-
solute value of the difference between the FFT magnitude
spectrum ofs(500 : 755) and the FFT magnitude spectrum
of the corresponding CELP result (dashed line), together



with the absolute value of the difference between the FFT
magnitude spectrum ofs(500 : 755) and the FFT magnitude
spectrum of the corresponding STLN result (dotted line). At
a sampling frequency of8 kHz, the highest frequency on the
x-axis should be4 kHz, but we only show that part of the
spectrum where the magnitude differs considerably from0.
We see, especially from the lower part of the figure that the
5 largest peaks are better fitted by the STLN result than by
the CELP result, which illustrates the better quality of the
signal poles obtained by STLN.
There is a drawback associated to our new approach, which
is its computational load. Since the kernel problem is an
equality constrained LS problem, we have per iteration ap-
proximately4mn2 flops, withm � n the dimensions ofS.
However, it is possible to speed up the kernel problem, by
exploiting the Hankel structure (as indicated for the Toeplitz
structure in [12]). It is worth noting that starting values play
an important role in the overall performance of STLN. It
has been found that HTLS provides a satisfactory initializa-
tion, however further research is under way to find simpler
alternatives.

4. CONCLUSIONS

In this paper we propose a new type of vocoder. Like many
vocoders, it is based on an all-pole model of the vocal tract.
In contrast to other LPC based methods, we derive a per-
turbed signal which exactly satisfies an all-pole model. This
is what we call an exact AR modeling. As a result, we only
have to transmit the model parameters and the initial val-
ues for each frame. Alternatively, we can transmit the cor-
responding frequencies, dampings, phases and amplitudes,
which is numerically more stable but computationally more
complex.
Results show that the segmental SNR of our approach is
substantially higher than that of CELP, for similar compres-
sion ratios. The drawback of the approach is of course its
computational load. The latter prevents the algorithm from
being applied in real-time applications. However, the de-
velopment of fast STLN algorithms will bring this vocoder
closer to real-time implementation. For off-line applications
(e.g. storage of sound files at a server), the simple recon-
struction algorithm outweighs the computational expensive
coding.
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