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ABSTRACT

The acoustic mismatch between testing and training condi-
tions is known to severely degrade the performance of speech
recognition systems. Segmental feature vector normalization
[8] was found to improve the noise robustness of MFCC fea-
ture vectors and to outperform other state-of-the-art noise
compensation techniques in speaker-dependent recognition.
The objective of feature vector normalization is to provide
environment-independent parameter statisticsin all noise con-
ditions. In this paper, we propose a more efficient implemen-
tation approach for feature vector normalization where the
normalization coefficients are computed in a recursive way.
Speaker-dependent recognition experiments show that the
recursive normalization approach obtains over 60%, the seg-
mental method approx. 50%, and Parallel Model Combination
14% overall error rate reduction, respectively. Moreover, in
the recursive case, this performance gain is obtained with the
smallest implementation costs. Also in speaker-independent
connected digit recognition, over 16% error rate reduction is
obtained with the proposed feature vector normalization ap-
proach.

1. INTRODUCTION

The development of noise robust speech recognition ago-
rithms is becoming increasingly important as speech technol-
ogy is currently widely applied to real world applications. Al-
though noise robustness has recently gained a great dea of
interest in speech recognition research, practical speech recog-
nition systems still provide a moderate performance even in
simple recognition tasks if the testing and training environ-
ments do not match each other acoustically.

Several techniques have been proposed for reducing the mis-
match between the testing and training environments. Many of
these methods operate either in spectral [5], or in cepstral do-
main [6]. In addition to various normalization approaches,
noise robust feature extraction techniques, such as the RASTA
method [3], have aso been developed. The mismatch effects
can also be compensated in the recognition unit, as done in
Parallel Model Combination (PMC) [2]. Most noise compen-
sation methods require a good noise estimate in order to work
properly. To compute a reliable noise estimate, an accurate
Voice Activity Detector (VAD) is needed. Since the accuracy
of VADs is poor in noisy environments, many compensation
techniques tend to fail in adverse conditions.

In [8], we presented a segmental mean and variance compen-
sation approach for feature vectors. All feature vectors were
normalized to have the same segmental parameters statistics in
all noise conditions. This joint mean and variance compensa-
tion was found to improve significantly the robustness of the
Mel-Freguency Cepstral Coefficients (MFCC) against various

additive noise types and microphone mismatch. Speaker-
dependent recognition experiments showed that in terms of
recognition rate segmental feature vector normlization was
superior to other state-of-the-art noise compensation methods.
Here, we describe a recursive implementation approach for the
previously presented segmental normalization method. Using
the recursive normalization approach we can implement fea
ture vector normalization more efficiently without compro-
mising in recognition performance.

The viability of the proposed recursive normalization method
is tested in speaker-dependent isolated name recognition and
speaker-independent connected digit recognition tasks which
are the two key speech recognition applications for hands-free
voice dialling systems.

2.NORMALIZATION ALGORITHM

Earlier, we proposed a segmental feature vector normalization
technique [8] to deal with the performance degradation due to
the acoustic mismatch between training and testing environ-
ments. The objective was to normalize the feature vectors to
have a zero mean and unity variance within a sesgment of inter-
est asfollows

g=Int [fx —m) (1)
where X isthe original feature vector, and X isits normalized
version, respectively. This kind of normalization generally
requires some information on the statistics of feature vectors
over the whole utterance. Therefore, the normalization coeffi-
cients, the cepstra mean vector m, and the inverse of the
diagonal covariance matrix Al = (1/6%y,..., Yo%, 0 were
computed over a diding finite length normalization window
(1.0 sec.). The feature vector to be normalized was located at
the center of the window. The advantages of this type of nor-
malization are the environment-independent parameter statis-
tics, fast adaptation to changing noise conditions, and inde-
pendence of VAD.

Previoudly, a similar normalization approach has widely been
applied to neura network based speech recognizers to speed
up the parameter estimation process. However, in those sys-
tems the normalization coefficients are typicaly computed
over the whole utterance which is not a feasible solution in
real-time applications due to the unnecessary long processing
delay. To avoid this delay, it was proposed in [7] that mean
and standard deviation should be computed as the long-term
estimates over the several past utterances. Furthermore, a re-
cursive technique for computing the normalization coefficients
was suggested to avoid the problems associated with buffering
feature vectors of the past utterances. It is neverthel ess obvious
that this kind of normalization approach is not well applicable
for practical speech recognizers. At first, it cannot cope with
rapidly changing noise conditions, and secondly, it assumes



that the past utterances are spoken in similar noise conditions,
as the current utterance.

2.1 Recursive Feature Vector Normalization

The length of the normalization window is the major drawback
associated with the segmental feature vector normalization
approach. It was shown in [8] that approximately a 1.0 sec.
speech segment is long enough to guarantee robust normaliza-
tion coefficients. From implementation point of view, the win-
dow length should be as short as possible, since memory con-
sumption and the processing delay are directly proportiona to
the normalization window length.

The normalization coefficients can be estimated recursively as
shown in [7]. By combining the recursive normalization coef-
ficient computation and the previous segmental feature vector
normalization, we can significantly shorten the normalization
window length without decreasing the recognition perform-
ance. During the first N feature vectors, we only compute the
values for sample sum and sample square sum. Thus, theinitia
mean and standard deviation estimates can be determined for
each feature vector component i as
N
m(i) =— 3 o) ad
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where o, (i) denotes the ith feature vector component at timet.
Once the initial estimates are known, the first feature vector in
the window can be normalized as

X'[—N (I)_m(l) . (3)
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All feature vectors are thus decoded with the delay of N
frames. For each new incoming feature vector, we dide the
normalization window forwards and iteratively update the
cepstral mean and sample square estimates as

m(@) = A0n_y(i) +(1-A) o (i) (4
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where A is the step-size of the update. Experimental results
show that we can use significantly shorter (approximately 50-
80%) window for computing the normalization coefficients,
and still slightly improve the recognition performance com-
pared to the segmental normalization method.

3. ANALYSISOF NORMALIZED
FEATURE VECTORS

The feature vector normalization transform given in Eq. (1)
can be divided into mean remova and Automatic Gain Control
(AGC) parts. Mean removal can be regarded as linear high-
pass filtering and division by standard deviation takes care of
the AGC function so that the parameter statistics are always the
same irrespective of noise conditions.

3.1 Time Trajectories of Normalized Features

If the normalization coefficients are computed over the whole
utterance, the shape of feature vector time trajectories is not
dltered at all. However, since the normalization window does

not expand over the whole utterance, the time-domain trajecto-
ries of feature vectors are distorted. This phenomenon is illus-
trated in Figs. 1 and 2 where the time-domain trajectory of the
first cepstral coefficient (C1) is drawn with and without recur-
sive normalization in clean and noisy environments (N=30,
A =0955). The vertical lines denote the start- and endpoints
of the utterance, respectively.
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Fig. 1: Time domain trgectory of the C1 in a clean envi-
ronment with and without feature vector normalization.
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Fig. 2: Time domain trajectory of the C1 in the pres-
ence of car noise (SNR = -5 dB) with and without
feature vector normalization.

The lower displays of Figs. 1 and 2 show that both in the clean
and noisy case, the parameter statistics appear very similar.
Since the variance of background noise is very small, particu-
larly in a clean environment (Fig. 1), one has to emphasize the
noise portions of the utterance in order to meet the unit vari-
ance requirement within a segment of interest. Therefore, the
speech and background noise portions of the utterance can
visudly be difficult to distinguish in the case of normalized
features. This event is aso visible in spectral domain as shown
in the next section.

3.2 Spectral Representation of Normalized
MFCCs

We used mel-log power spectrogram displays for investigating
the spectral representation of normalized feature vectors. The
spectrograms were plotted both in the case of origina and
normalized MFCCs. Fig. 3 illustrates the spectrograms of the

digit “three” for original and normalized MFCCs in a clean
environment. In Fig. 4, the same displays are plotted for the



same digit spoken by the same speaker in a noisy environment
(car environment, driving approx. 120 km/h).
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Fig. 3: Mé-log power spectrograms for original and
normalized MFCCsin a clean environment.
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Fig. 4: Mé-log power spectrograms for original and
normalized MFCCs in the presence of noise.
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By studying the upper displays of Figs. 3 and 4, it can be seen

that ambient background noise effectively masks speech re-
sulting in very different feature representation in clean and
noisy conditions. However, the lower displays of Figs. 3 and 4
show that in the case of normalized features, noise has less
effected the spectrograms. As shown in Fig. 3, the use of fea

ture vector normalization in a clean environment makes the
spectrograms to look more “noisy”, and hence, it is more diffi-
cult to detect speech events. Recognition experiments never:
theless indicate that a fuzzy boundary region betweeacsp
and noise does not decrease the recognition performance it
clean conditions. Moreover, a comparison of the lower dis-
plays of Figs. 3 and 4 show that noresph regions appear
similar. It is difficult to give a precise explanation for the im-
provement in recognition accuracy that we see when applying
this normalization approach to mismatch conditions. The most
obvious explanation is that the feature vector statistics are
made similar in different noise conditions.

4. EXPERIMENTAL RESULTS

The recursive feature vector normalization approach was
evaluated in speaker-dependent name recognition and speaker-
independent connected digit recognition tasks. In all the tests,
13 MFCCs (including the zeroth cepstral coefficient), their
first- and second-order time derivatives were extracted from
the incoming signal.

In nhame recognition, a state duration constrained HMMor

each vocabulary word was estimated from a single noise-free
training utterance. Each training utterance was automatically
endpointed based on frame powers and zero-crossing rates.
Due to the lack of training data, all HMMs shared the same
diagonal covariance matrix (unity matrix in the case of nor-
malized MFCCs). In testing, clean waveforms were artificially
corrupted by adding noise at various Signal-to-Noise Ratios
(SNR). All given recognition percentages are average rates
over all test speakers.

The TIDIGITS speech database was used in speaker-
independent connected digit experiments. Again, to obtain
noise corrupted utterances, car noise was added to clean
waveforms. Whole word digit HMMs were estimated using an
equal amount of training data from selected noise conditions
according to the Maximum Likelihood (ML) principle.

4.1 Resultswith Recursive Normalization

At first, the effect of normalization window length on the rec-
ognition accuracy was studied in the case of recursive feature
vector normalization. The window lengtN (in terms of
frames) and the update step-sizewere coupled as

1-aN =L ()
V2

Figure 5 shows the results obtained in speaker-dependent name
recognition with various values ol at different SNRs.
Clearly, one has to buffer at least 20 feature vectors (0.2 secs.)
in order to achieve a good recognition performance at low
SNRs as well. Based on these results, the window length of 30
was chosen for recursive normalization in the following ex-

periments conducted in this paper.
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Fig. 5. Effect of normalization window length on the
recognition accuracy.

4.2 Comparison of Noise Robust Techniques

The viability of the proposed recursive feature vector normali-

zation approach was studied both in speaker-dependent and

speaker-independent recognition tasks. The performance of the

recursive normalization approach was compared in speaker-



dependent name dialling to originat MFCCs, PMC, and seg-
mental normalized MFCCs [8]. Our PMC implementation [9-
10] relies on VAD [1] whose decisions are used to control the
noise estimate computation. In connected digit recognition, the
performance of the recursively normaized MFCCs was com-
pared to origind MFCCs when using multi-environment
HMMs.

Figure 6 illustrates the recognition accuracy in name dialling at
various noise conditions. In the matched case (clean), a high
recognition rate was obtained in all cases. If no noise compen-
sation agorithms were applied, the recognition performance
begins to decrease drastically. PMC dlightly improved the
performance, but the recognition rates were still fairly low. By
means of feature vector normalization, a high performance
could aso be achieved in adverse conditions. According to
Figure 6, it can be seen that the recursive approach dightly
outperforms the segmental normalization approach. The aver-
age error rate reduction in the recursive case was 62.0%, and
using the earlier segmental method a 49.5% overal error rate
reduction was obtained. Moreover, regarding the implementa
tion aspects the recursive approach was superior to the seg-
mental method, as only 30 feature vectors were needed for
normalization, whereas the segmental method required 100
frames [8] in order to achieve approximately the same recog-
nition performance. Both feature normalization methods were
superior to PMC which obtained a 14.0% overal error rate
reduction.
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Fig. 6: The performance of various noise robust tech-
niques in name recognition.

Speaker-independent connected digit tests were carried out in
three different environments using three different sets of
HMMs. Each model set had a constant number of mixtures (1-
3) in each HMM state. As Fig. 7 shows, the use of normaliza-
tion aways improved the recognition rates with respect to
original MFCCs (baseline).
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Fig. 7: Recognition results in speaker-independent
connected digit tests with and without normalization.

Due to normalization, the average error rate reduction over al
the model sets and environments was 16.3%. The greatest ab-
solute performance improvement was achieved with single
mixture HMMs in the most noisy conditions. Even though
feature vector normalization was found to improve the recog-
nition accuracy, the performance gains were not as great as
expected based on the speaker-dependent experiments. Large
speaker variability and various co-articulation effects possibly
reduced the performance in these speaker-independent experi-
ments.

5. CONCLUSIONS

In this paper, we proposed and investigated a recursive imple-
mentation approach for feature vector normalization. The main
advantage of the recursive normalization approach is its more
efficient implementation compared to the previously described
segmental method. Recognition experiments indicate that the
recursive approach also provides marginally better recognition
performance in speaker-dependent name dialling than obtained
with segmental normalization. In the speaker-independent
tests, recursive feature vector normalization was found to im-
prove the performance in a multi-environment connected digit
recognition task. However, we are not fully satisfied with the
obtained performance gains. The focus of the future work is
thus on improving the performance of normaization in the
speaker-independent case as well.
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