
MINIMIZATION OF DATA ADDRESS COMPUTATION OVERHEAD

IN DSP PROGRAMS

Bernhard Wess and Martin Gotschlich

INTHFT, Vienna University of Technology
Gusshausstrasse 25/389, A-1040 Vienna, Austria
phone: +43 1 58801 3519, fax: +43 1 5870583

email: bwess@email.tuwien.ac.at

ABSTRACT

Digital signal processors (DSPs) provide dedicated
data address generation units (AGUs) with multiple
register �les. These units allow data memory access by
indirect addressing with automatic address modi�ca-
tion. Typically, both linear and modulo addressing are
supported. There is no address computation overhead
if the next address is within the auto-modify range.
Often, this range can be adapted to the application by
assigning static values to modify registers.
In this paper, we discuss optimized data memory ad-
dress generation in DSP programs. Here the goal is to
minimize data address computation and register ini-
tialization costs by optimizing data memory layout,
address register assignment, and auto-modify range.
The investigated combinatorial optimization problems
can have an extremely large solution space. However,
experimental results indicate that random neighbour-
hood sampling by simulated annealing allows to pro-
duce highly optimized solutions.

1. INTRODUCTION

It has been shown in [1] that many high-level lan-
guage compilers for digital signal processors (DSPs)
produce very poor code. Often the only alternative
is assembly-level programming which is both time-
consuming and error-prone. To overcome this prob-
lem, new code optimization techniques are developed
[2, 3]. As compared to compilers for general-purpose
computers, lower compilation speed is acceptable and
therefore more computation-time intensive algorithms
may be applied.

In this paper, we focus on optimized data mem-
ory address generation in DSP programs. In section
2, we de�ne a generic address generation unit (AGU)
model which is consistent with current DSP architec-
tures. The address assignment problem (AAP) and the
index allocation problem (IAP) are discussed in section

This work has been supported by the Fonds zur F�orderung
der wissenschaftlichen Forschung under research grant P10701-
�OTE.

3 and 4, respectively. Both AAP and IAP are combina-
torial optimization problems of exponential complexity.
However, experimental results in section 5 show that,
for realistic problem sizes, highly-optimized solutions
can be produced within a short time. Conclusions are
given in section 6.

2. DATA ADDRESS GENERATION UNITS

Typicallly, as shown in Fig. 1, AGUs of DSPs provide
three register �les: the index register �le (IRF), the
modify register �le (MRF), and the length register �le
(LRF). The index registers contain the actual addresses
for data memory access. When data is accessed in in-
direct mode, the address stored in the selected index
register becomes the memory address. AGUs employ
a post-modify scheme. After an indirect data access,
the speci�ed modify register is added to the selected
index register. For circular bu�ers, the AGUs perform
modulo address modi�cation where the selected length
register contains the bu�er length.

In our AGU model, there are k address pointers (in-
dex registers) with an auto-modify range [�n; p] where
k, n, and p are any positive integers. For the speci�c
case of auto-increment/decrement AGU architectures,
both n = 1 and p = 1. Typically, a modify range
[�2; 2] can be realized in contemporary DSPs by as-
signing static values to modify registers. In general,
the parameters n and p need not be equal. We can
model both linear addressing

I +m ! I

and modulo addressing

(I +m �B) mod (L) +B ! I

with m 2 f�n; : : : ; pg. I denotes the selected index
register and L the bu�er length. Without any loss of
generality, we assume for the base address B = 1. For
the following discussion, we assign zero cost to auto-
modify operations and unit cost to register load oper-
ations. Note that our AGU model is consistent with



IRP

e�ective address

IRF

MRP

MRF

LRP

LRF

imm

+

MODULUS

LOGIC

Figure 1: Typical architecture of an AGU.

contemporary DSP architectures such as Analog De-
vices' ADSP-2100 [4], Motorola's DSP56000 [5], and
Texas Instruments' TMS320C5x [6].

3. ADDRESS ASSIGNMENT PROBLEM

The address assignment problem is to construct a data
memory layout such that the number of accesses out-
side the auto-modify range is minimized. Here it is as-
sumed that there is a set V of program variables which
are accessed in the sequence S. Bartley [7] has pro-
posed a heuristic algorithm for the speci�c case of lin-
ear addressing with auto-increment or decrement by
1. His work has been improved and generalized in
[8, 9, 10, 11].

For the generic AGU model de�ned above, op-
timal memory layout generation can be formulated
as a quadratic assignment problem (QAP) [12]. Let
A = (aij) be an jV j � jV j matrix (adjacency matrix )
where aij gives the number of access transitions be-
tween program variables i and j in S. We de�ne a
cost matrix C = (cij) which gives the addressing costs
for all possible access transitions. For linear addressing
with auto-modify range [�n; p], C becomes

c(n; p)ij =

�
0 if j = i +m
1 otherwise,

and in case of modulo addressing

c(n; p)ij =

�
0 if j = (i +m � 1) mod jV j+ 1
1 otherwise,

with m 2 f�n; : : : ; pg. With our de�nitions for the ad-
jacency matrix A and cost matrix C, optimal memory

layout generation is equivalent to �nding a permuta-
tion � of set N = f1; : : : ; jV jg such that the objective
function

o(�; n; p) =

jV jX
i=1

jV jX
j=1

c(n; p)ija�(i)�(j)

becomes minimal. In this case, � gives the optimal ad-
dresses for the program variables v 2 V of S. The QAP
is NP-hard but there are e�cient heuristics leading to
near-optimal solutions within short time.

Optimal address assignment for loops has to take
into account access transitions between loop iterations.
In this case, the objective function becomes

o(�; n; p) =

jV jX
i=1

jV jX
j=1

c(n; p)ija�(i)�(j) + c(n; p)lfa�(l)�(f)

where f and l denotes the �rst and the last program
variable, respectively, in the access sequence.

Generating optimum memory layouts in the pres-
ence of k address pointers can be considered as a k-
coloring problem. Here, a color is assigned to each
element of S corresponding to the accessing address
pointer. As a consequence, a program variable can be
accessed by di�erent address pointers at di�erent times.
The goal is to minimize the sum of the objective func-
tion values (index register reload costs irc) for the k
subsequences of S which are de�ned by the colors,

irc =
X

i2colors

oi(�; n; p):



We take initialization costs of address registers into ac-
count by adding two terms to the objective function so
that the total addressing costs tac are given by

tac =
X

i2colors

oi(�; n; p)

| {z }
index register
reload costs

+ jcolorsj| {z }
index reg.
init. costs

+ n+ p:| {z }
modify reg.
init. costs

In case of modulo addressing, we add an extra term
for the length register initialization costs. If each in-
dex register has its own length register, these costs are
jcolorsj. Let k be the maximum number of available
address pointers and [�n0; p0] be the largest possible
auto-modify range. In general, we are interested in
�nding an optimized data memory layout �, an address
pointer assignment with jcolorsj address pointers, and
an auto-modify range [�n; p] that minimize tac with
jcolorsj � k, n � n0, and p � p0.

4. INDEX ALLOCATION PROBLEM

Now, let us consider an access sequence to array ele-
ments. The problem of allocating address pointers to
array accesses can be considered as a speci�c case of
the AAP where the data memory layout is �xed. Let
ind(i) be the index of the array access i. We de�ne the
indexing matrix M = (mij) by

m(n; p)ij =

�
0 if ind(j) � ind(i) 2 f�n; pg
1 otherwise.

Let N be the length of the array access sequence
and X = f1; : : : ; Ng. Formally, k-coloring the ar-
ray access sequence is equivalent to generating a par-
tition P = ffX1g; fX2g; : : : ; fXkgg of X. Let Si =
ff(1); f(2); : : : ; f(L)g be a sequence de�ned byXi with
f(1) < f(2) < : : : < f(L) and L = jXij. If each Si
represents the array accesses for one of the k address
pointers, then the reload costs are given by

oi(n; p) =
L�1X
j=1

mf(j);f(j+1):

The goal is to �nd an optimumcoloring (partition) such
that the objective function value

o(n; p) =
X

i2colors

oi(n; p)

is minimized.
The goal of the IAP is to allocate address pointers

to array accesses which are part of loop body state-
ments. Araujo in [13] was the �rst to formulate this
problem for index expressions of the type c�i+d where
c and d are integer quantities and i is the induction
variable which is linearly updated by the integer quan-
tity s (loop step). Araujo looks for a minimumnumber

of address pointers avoiding reload operations. How-
ever, neither register initialization costs nor optimiza-
tion across loop iterations are taken into account. A
heuristic algorithm for inter-iteration optimizations is
proposed in [14].

We investigate a related optimization problem. The
goal is to minimize the total addressing costs for a given
maximumnumber of address pointers. We take register
initialization costs into account and do inter-iteration
optimization.

Let dist(i; j) denote the indexing distance between
accesses i and j within a loop,

dist(i; j) =

�
ind(j) � ind(i) if i � j
ind(j) � ind(i) + c � s if i > j:

For the IAP, we de�ne the indexing matrix by

m(n; p)ij =

�
0 if dist(i; j) 2 f�n; pg
1 otherwise.

For any subsequence Si, the indexing costs are given
by

oi(n; p) =
L�1X
j=1

mf(j);f(j+1) +mf(L);f(1)

where mf(L);f(1) represents the costs for redirecting the
address pointer from ind(f(L)) (last access within the
current loop iteration) to ind(f(1)) + c � s (�rst access
within the next iteration). Again, the goal is to �nd
a coloring that minimizes the total addressing costs
tac by taking address register initialization costs into
account,

tac =
X

i2colors

oi(n; p) + jcolorsj+ n + p:

5. EXPERIMENTAL RESULTS

The solution spaces of AAP and IAP instances can be
extremely large. The number of solution space points
for the AAP is

kjSjjV j!

where jSj is the access sequence length, jV j the number
of di�erent program variables, and k the number of
available address pointers.

We have applied a neighbourhood search technique
to generate optimized solutions for the AAP and IAP.
By repeatedly moving from the current solution to a
neighbouring solution, a subset of feasible solutions is
explored. Kirkpatrick [15] proposed to apply simulated
annealing to escape from local minima in the search
process. In contrast to descent strategies, the simulated
annealing algorithm may accept neighbours giving rise
to an increase in the cost function. The acceptance
probability depends on a control parameter (tempera-
ture) and the magnitude of the increase. The simulated
annealing algorithm can be stated as follows:



Objective function o, temperature reduction
function �, and neighbourhood structure N .

select an initial solution s0;
select an initial temperature t0 > 0;
repeat

repeat
randomly select s 2 N (s0);
� = o(s) � o(s0);
if � < 0 then s0 = s
else generate random x uniformly in [0; 1];

if x < e��=t then s0 = s;
until iteration count = nrep;
t = �(t);

until stopping condition = true;

s0 is the approximation to the optimal solution.

When generating neighbouring solutions for the IAP,
random color changes are made. In case of the AAP, we
additionally allow changes in the data memory layout
by randomly swapping program variables. The num-
ber of colors and the size of auto-modify range are ran-
domly modi�ed both in case of the IAP and the AAP.
These parameters determine the address register ini-
tialization costs.

We have made experiments with random access se-
quences for the AAP and random indexing sequences
for the IAP. Highly optimized solutions have been ob-
tained in at most a few seconds (for sequence lengths
up to 50) on a Pentium PC. Our approach signi�cantly
outperforms the existing techniques in terms of total
addressing costs. Typical savings are in the range of
30% to 40%.

6. CONCLUSIONS

Optimization of DSP programs with respect to data
memory address generation is a combinatorial prob-
lem. We have de�ned a generic AGU model which
is consistent with comtemporary DSP architechtures.
Based on this model, the address assignment problem
and the index allocation problem are introduced which
are of exponential complexity. For realistic problem
sizes, however, highly optimized solutions can be pro-
duced within a few seconds on a Pentium PC.

7. REFERENCES

[1] V. Zivojnovic, J. M. Velarde, C. Schl�ager, and
H. Meyr, \DSPstone: a DSP-oriented benchmark-
ing methodology", in Proc. 5th Int. Conf. on Sig-
nal Processing Applications & Technology, vol. 1,
pp. 715{720, Dallas, October 1994.

[2] P. Marwedel and G. Goossens, Eds., Code Gener-
ation for Embedded Processors, Kluwer Academic
Publishers, 1995.

[3] G. Goossens, J. V. Praet, D. Lanneer, W. Geurts,
A. Kii, C. Liem, and P. G. Paulin, \Embed-
ded software in real-time signal processing sys-
tems: design technologies", Proc. IEEE, vol. 85,
pp. 436{454, March 1997.

[4] Analog Devices, Inc., ADSP-2100 Family User's
Manual, September 1995.

[5] Motorola, Inc., DSP56000 Digital Signal Proces-
sor Family Manual, 1992.

[6] Texas Instruments, Inc., TMS320C5x User's
Guide, 1997.

[7] D. H. Bartley, \Optimizing stack frame accesses
for processors with restricted addressing modes",
Software-Practice and Experience, vol. 22, pp.
101{110, February 1992.

[8] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and
A. Wang, \Storage assignment to decrease code
size", in Proc. ACM Conf. on Programming Lan-
guage Design and Implementation, pp. 186{195,
June 1995.

[9] R. Leupers and P. Marwedel, \Algorithms for
address assignment in DSP code generation", in
Proc. IEEE Int. Conf. on Computer-Aided Design,
pp. 109{112, San Jose, November 1996.

[10] B. Wess and M. Gotschlich, \Constructing mem-
ory layouts for address generation units support-
ing o�set 2 access", in Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, vol. 1,
pp. 683{686, Munich, April 1997.

[11] A. Sudarsanam, S. Liao, and S. Devadas, \Anal-
ysis and evaluation of address arithmetic capabil-
ities in custom DSP architectures", in Proc. 34th
ACM/IEEE Design Automation Conf., Anaheim,
June 1997.

[12] B. Wess and M. Gotschlich, \Optimal DSP mem-
ory layout generation as a quadratic assignment
problem", in Proc. IEEE Int. Symp. on Circuits
and Systems, vol. 3, pp. 1712{1715, Hong Kong,
June 1997.

[13] G. Araujo, A. Sudarsanam, and S. Malik, \In-
struction set design and optimizations for address
computation in DSP architectures", in Proc. 8th
Int. Symp. on System Synthesis, La Jolla, Novem-
ber 1996.

[14] R. Leupers, Retargetable Code Generation for Dig-
ital Signal Processors, Kluwer Academic Publish-
ers, 1997.

[15] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi,
\Optimization by simulated annealing", Science,
vol. 220, pp. 671{680, May 1983.


