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Iterated Transformation Theory (,77) coding, also known as
Fractal Coding, in its original form, allows fast decoding but
suffers from long encoding times. During the encoding step, a
large number of block best-matching searches have to be
performed which leads to a computationally expensive process.
We present in this paper a new method that significantly
reduces the computational load of ,77 based image coding. Both
domain and range blocks of the image are transformed into the
frequency space. Domain blocks are then used to train a two
dimensional Kohonen Neural Network (.11) forming a code
book similar to Vector Quantization coding. The property of
.11 (and Self-Organizing Feature Maps in general) which
maintains the topology of the input space allows to perform a
neighboring search so as to find the piecewise transformation
between domain and range blocks.

�� ,1752'8&7,21

Image compression techniques try to exploit some form of signal
redundancy or irrelevance. A signal representation is said to be
redundant if another, more compact, representation can be found
without introducing any distortion on the signal [1]. On the
other hand, a coder that exploits irrelevance on a signal
introduces distortion that may, or not, be perceived by a human
observer [2].

Fractal Image Coding (),&) based on Iterated Transformation
Theory [3,4], as well as Vector Quantization (94) or DCT-
based techniques, are considered as second generation methods
for Image Coding. According to Shannon’s Rate Distortion
Theory, block and vector based coding methods are superior to
scalar coding for achieving the theoretical high compression
rates [5,6]. ),& exploits a signal property called piecewise self-
similarity [7] to remove redundancy and irrelevance from the
signals of interest. A signal is said to possess self-similarity if
parts of it in some sense resemble or are similar to the whole
signal or other parts of it [8]. Therefore, if we can find an affine
contractive mapping, defined by a set of affine transformations
on the support of the image itself, we will be able to reconstruct
the image as the fixed point of the mapping.

In this paper we present the combined application of Discrete
Cosine Transforms and Kohonen Neural Nets, as a particular
case of Self-Organizing Feature Maps (62)0), to reduce the
time complexity in fractal block coding, which is 2�1�� time

complex for 1 domain blocks. In our approach we build a
feature code book mapped onto a two-dimensional Kohonen
neural network. 62)0 have successfully been used to reduce
time complexity in Fractal Image Coding [9,10]. Nevertheless,
our method differs on an important point: we drastically reduce
the feature code book size by using some coefficients of DCT
transformed blocks.

In the first step of our approach, the .11 is built upon vectors
obtained after Discrete Cosine Transform of the image domain
blocks. These vectors are mapped onto the�.11�obtaining a set
of domain block classes. Each range block, after transformation,
is then mapped to a neuron (code word) and from there to a
domain block class. This class is searched for best-matching
between range and domain blocks. The self-organizing
properties of .11’s allow searching for a better solution, if
necessary, among the domain block classes associated to
neighboring neurons of the initial match.

This paper is organized as follows. In Section 2 we present the
background literature on Iterated Transform Theory, Discrete
Cosine Transform and Kohonen Neural Nets. In Section 3 we
then describe the combined method proposed for domain block
classification in ),&. Finally we summarize our major results
and outline the major improvements on the complexity and
computation time.
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Iterated Transformation Theory provides a way to represent an
element in a general metric space by a contractive
transformation defined on such space. In image coding, the
element, or fixed point, is the target to be encoded. The
transformation is the code for the image, and to achieve
compression, its representation has to be simpler than the
original image.

Operating a contractive mapping on two arbitrary points of the
space ; (image space)�with the metric G� it always causes the
two points to approach. Banach’s fixed point theorem states that
a contractive mapping 7�on a complete metric space ; defines a
unique point [W invariant with respect to 7 and is the limit of
applying Q times 7.

An Iterated Function System (,)6) is a collection of contractive
affine transformations on a complete metric space. Banach’s



fixed point theorem can be generalized when applied to ,)6:
each ,)6 has a unique attractor which is the union of the
transformations of the attractor.

This approach requires some modifications to be applied to ),&.
For coding, the class of mappings is further constrained by
restricting each 7∈7 to be the sum of partial affine
transformations 7L, each of which operates on a range block
indexed by L. For each L, 7L is only allowed to take a domain
block, indexed by M, to which an isometry operator can be
applied, map it into range block L and set the rest of the image to
zero [3] (see HTXDWLRQ��1).
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Coding of an image [∈; is equivalent to finding a partial
mapping 7L for each range block of the image. Each range block
is then coded as a gain αL, a translation block DL, an isometry
operator 6,�L� and the translation parameters for range block M.

For decoding, the fractal code of 7 is iterated on any initial
image ]∈; until the distortion between two consecutive images
is not noticeable.
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The Discrete Cosine Transform has successfully been used for
Fractal Image Coding in the past. On a first approach, domain
and range blocks are transformed onto the DCT domain [12,13].
But since the inverse DCT is performed for every image block at
decoding time, the decoding stage is not as rapid as fractal
compression in the spatial domain. A later approach [14]
proposed to use the energy packing properties of the DCT to
improve existing multidimensional nearest-neighbor search
algorithms applied to Fractal Image Coding [15] and avoiding
the inverse DCT on decoding.

The Discrete Cosine Transform, as an orthogonal transform,
performs a change of basis. The transformed coefficients result
from the projection of a vector onto an orthogonal basis defined
by the transformation matrix. In every block of an image we can
consider the energy2 as being distributed over all pixels. The
DCT is a sub-optimal orthogonal transform which highly
decorrelates the data in a block. That is, it packs most of the
energy in a few number of transformed coefficients.

The main interest of using Discrete Cosine Transforms in our
application is its energy packing properties. Being the DCT
coefficients ordered in a block of size 1 11 2× , the DC value3 is
placed in the upper-left corner. The higher vertical frequencies
are placed in higher line indexes, and the horizontal frequencies
are placed in a similar way. When the DCT coefficients are
scanned in “zigzag” order, the lower the index is, the higher its
variance and the energy it contains [16]. This property is
adequate for pattern recognition based on feature selection [17].
                                                       
1 [(L) stands for domain block M used to code range block L.
2 In image processing, the energy of a block is defined as the

squared value of every pixel.
3 Transformed mean value of block luminance.

The method retains those features, DCT coefficients, with high
variances and drops the rest, which are less useful for
classification purposes.
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The Kohonen Neural Net belongs to the class of Self-Organizing
Feature Maps (62)0) [18,19,20]. It is an Artificial Neural Net
($11) in which cells are tuned to various input signal patterns
or classes of patterns through an unsupervised learning process.
The self-organizing process can be considered as a mapping of
the probability density of a high dimensional input space onto a
low dimensional space (typically 1, 2 or 3-dimensional space)
where output nodes corresponding to nearby input patterns are
topologically close. The aim of .11 is to cluster the input data
in such a way that similar inputs are classified in the same
cluster.

The training phase of a .11 belongs to the class unsupervised
competitive learning algorithms. Unsupervised since the
algorithm does not require a reference value for the $11, as
opposed to other learning algorithms such as back-propagation.
Competitive learning algorithm because all neurons receive the
same set of inputs from the input layer. The neuron with higher
activation factor (similarity measure between the weights and
the input block) makes neighboring neurons to adapt their
weights in that direction (see )LJXUH� �, for further details see
[19]).

�� &20%,1('�0(7+2'�)25�)5$&7$/
,0$*(�&2',1*

In this section we present an algorithm based on the
combination of DCT transformed blocks and Kohonen Neural
Nets to improve encoding time for Fractal Image Coding. This
new method speeds up coding by efficiently classifying image
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)LJXUH� �� Training of a .11 for building the code
book. The training set EL�M  is obtained by taking blocks
from the image '. The learning step (adjustment of
ZP�Q) of a neuron P�Q depends on its distance from 1PD[

and on a time decreasing function for the convergence
of the .11.



blocks and thus improving the best-matching search. Since the
),& representation of the image remains the same as when
performing exhaustive search, the decoder complexity does not
increase.

1. Build a domain pool that will be used to train the .11. This
domain pool is made up of vectors obtained after pre-
processing of the domain blocks. The first step is to down-
sample domain blocks to size (E[¶,E\¶)1. The resulting blocks
are normalized according to (TXDWLRQ� �2. For each
normalized block generate 8 isometries3 and apply a DCT to
all of them. Vectors in the domain pool are created from
some of the AC coefficients4. This pre-processing of domain
blocks removes the unnecessary information for ),&
contained in domain blocks: the constant component and the
range of pixel values.
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2. Build the code book in the .11� using the normalized
vectors from the domain pool obtained in step 1 as a training
set. The .11 is initialized with random values. During the
learning phase, vectors from the domain pool are presented
to the network Q times or until the map converges
(infinitesimal changes in the weights of the .11).

3. Establish the correspondence between the vectors in the
domain pool and a neuron in the .11. Each neuron keeps a
list of associated vectors, closest to the pattern stored in
their weights, the domain image block and the isometry
operator indicator that generated the vector.

4. Create a non-overlapping partition with blocks of size (E[,E\)
on the domain image to be coded. Transform each range
block EL�M of the partition as defined in step 1. If we allow
range block splitting, these blocks may need to be down or
up-sampled to size (E[¶,E\¶). Establish the correspondence
with the neuron 1N�O which stores the closest pattern to EL�M in
its weights.

5. Establish the correspondence between every range block
with one of the domain blocks from the image. Perform a
best-matching search among the domain blocks associated to
the activated neuron 1N�O. If a minimum quality criteria is not
held, one can search in the classes associated to neighboring
neurons. In case the quality criteria is not satisfied, the
range block can be split5 into four blocks of the same size6

and code each one of them separately (repeat steps 4 and 5).
Once a best-matching is found, assign to block EL�M the fractal

                                                       
1 These values will depend upon the maximum size of range

blocks and whether we allow splitting or not.
2 G

L
 is the average pixel value of domain block GL, max(GL ) and

min(GL) are the maximum and minimum pixel values of GL.
3 See [4] for a complete description.
4 The number of AC coefficients corresponding to horizontal and

vertical frequencies should be the same.
5 If the predefined maximum level of splitting is reached, the

best matching is chosen ignoring the quality criteria.
6 Quad-tree partitioning.

code of the transformation (see 6HFWLRQ� ��� and (TXDWLRQ
�).

This algorithm as exposed, spends most of its computational
time on building a .11 for each image we encode. Nevertheless
there are other solutions to reduce this time. A first solution is
to use a pre-defined general purpose .11. This will reduce the
classification accuracy but on the other hand does not require
the time expensive learning phase. One could also start with an
existing code book and adapt it to the characteristics of the
image to be coded. The use of these alternatives is out of the
scope of this paper.
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We present in this section numerical results obtained in the
software simulation of the combined .11 and '&7 Fractal
Image Coder. Tests were run on digital gray images of
size 512 512×  pixels and quantized to 8 bits per pixel. Our
goal in this section is to prove that our classification of domain
blocks is accurate and if performs good when applied to ),&.
For analysis of the results, we will compare our algorithm with
one performing exhaustive best-matching search in several
aspects: encoding time, classification accuracy and image
quality.

Coded image quality is measured in terms of 3615 between the
original and the coded image. The 3615�can be seen as the ratio
of the dynamic range of the signal and the average energy in the
error between the original and the reconstructed image.

On the other hand, to measure domain blocks classification
accuracy we will use a VSOLWWLQJ� IDFWRU (6I) criteria. We are
interested in a classification method for domain blocks
specifically oriented to ),&. The best way to evaluate this
method is by comparison on the amount of splitting required to
code an image with a constant quality level. (TXDWLRQ� �
formalizes the VSOLWWLQJ�IDFWRU of an image.
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where OYO is the maximum level of range block splitting, N is the
number of new blocks generated when split, #ELM∈' is number
of range blocks encoded and the denominator in the logarithm is
the maximum number of range blocks.

The VSOLWWLQJ�IDFWRU�indicates how accurate is our classification.
The higher the 6I, the worse the classification is since no
matching is found.

We have run different simulations to study the influence of the
different parameters on the algorithm, in terms of image quality,
computational speed and classification accuracy. For the ),&
coder we use three different parameter sets (see 7DEOH��).

On the other hand, for the .11 we run the simulations varying
the input space dimension between 5, 9 and 14, and a two
dimensional array of neurons of sizes 16 16× and 32 32× .



(E[,E\) (�E[, �E\) (E[¶, E\¶) OYO

Set 1 (8,8) (16,16) (8,8) 0
Set 2 (16,16) (32,32) (8,8) 2
Set 3 (32,32) (64,64) (8,8) 3

7DEOH� ��� Different parameter sets related to Fractal
Image Coding used in our simulations.

FIC param.
KNN input
KNN size

6I

comb.
6I

exhaus
.

PSNR
comb.
(dB)

PSNR
exhaus.
(dB)

7comb /7exhaus.

Set 1, 9, 32 0 0 29.259 29.322 0.0123
Set 2, 9, 16 0.660 0.642 31.432 32.451 0.0195
Set 3, 9, 16 0.448 0.439 31.225 31.854 0.0976

7DEOH� ��� Summary of the best results obtained from
simulations (no research)1 coding ‘Lena’.

7DEOH� � summarizes the best results obtained compared to a
fractal encoder performing exhaustive best-matching search.
After running several simulations we obtained promising
results. The VSOLWWLQJ�IDFWRU obtained with our method is always
very close to the minimum achievable performing an exhaustive
search. This indicates the domain blocks are accurately
classified for ),& since range blocks are correctly coded and no
extra splitting is required to obtain the same quality. On the
other hand, the encoding time is drastically reduced, firstly
because the number of matchings performed is limited to
domain blocks associated to the class of the activated neuron.
The energy packaging property of the DCT allows to use a
reduced number of AC coefficients. This significantly reduces
the dimension of the input space in the .11 compared to other
methods [9] and thus the computational load related to the .11.
The result is a fractal image encoder between 10 and 80 times
faster than one performing exhaustive search. This time includes
the learning phase of the .11 which represents at least 70% of
the total time. There exist methods to reduce the learning phase
by using a predefined network or adapting an existing one to the
image being coded. These alternatives are out of the scope of
this paper.

These results were obtained searching only a class of domain
blocks. If a research is made among classes associated with
neighboring neurons, the VSOLWWLQJ� IDFWRU is further reduced at
the expense of a 2 to 6 times higher encoding time.

The goal of this work has been to study the feasibility of
applying both DCT and 62)0 techniques to ),&. From this
point there is a multitude of problems that could be addressed
such as, among others, adaptive segmentation, classification
based on HVS or further optimization of the algorithm.
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