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ABSTRACT

This paper presents a novel narrowband adaptive beam-
former with the generalized sidelobe canceller (GSC) as the
underlying structure. The new beamformer employs the
regular M -band wavelet �lters in the design of the block-
ing matrix of the GSC, which, as justi�ed analytically, can
indeed block the desired signals as required, provided the
wavelet �lters have su�ciently high regularity. Addition-
ally, the eigenvalue spreads of the covariance matrices of the
blocking matrix outputs, as demonstrated in various sce-
narios, decrease, thus accelerating the convergence speed of
the succeeding least mean squares (LMS) algorithm. Also,
the new beamformer belongs to a speci�c type of partially
adaptive beamformers, wherein only a portion of weights is
utilized in the adaptive processing. Consequently, the com-
putational complexity is substantially reduced as compared
with previous approaches. The issues of choosing the pa-
rameters involved for superior performance are addressed
as well. Simulation results are furnished to justify this new
approach.

1. INTRODUCTION

The design of adaptive beamformers is of importance in
various disciplines of signal processing applications such as
radar, sonar and geophysical explorations [1]. In many ap-
plications, it is not uncommon to use lots of sensors to
achieve better interference rejection as well as resolution.
To alleviate the computational overhead, two approaches
have been advocated in the literature.
The �rst approach is based on the technique of partial

adaptivity [1], in which only a fraction of the adjusting
weights is employed, thus leading to lower computational
complexity per iteration in adaptive processing. The sec-
ond approach is to accelerate the convergence speed. The
popular LMS algorithm has been notorious for its slow con-
vergence rate, especially for signals whose covariance ma-
trices have widely diverse eigenvalues. To overcome this
di�culty, several cascade preprocessors such as the Gram-
Schmidt orthogonalization[1], the discrete Fourier (cosine)
transform [2], and the wavelet transform have been sug-
gested. The recently introduced wavelet transform, which
forms a frequency adaptive window on the time-scale plane,
has in particular received a great amount of attention [3].
The wavelet transform has also been incorporated in the

adaptive beamformer termed WASPAB [4]. The WASPB,
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which employs the GSC [5] as the underlying structure, puts
a wavelet transform processor preceding the LMS algorithm
and indeed exhibits a faster null-steering process. In this
paper, we consider a more succinct approach by ingeniously
combining the blocking matrix and the wavelet transform
process into a single unit.
This new unit is constituted by a set of regular M -band

wavelet �lters [3] and, as justi�ed analytically, can also
block the desired signals as the traditional blocking ma-
trix, provided that the wavelet �lters employed have su�-
ciently high regularity. This new unit, also being referred
to as a blocking matrix, encompasses the widely used one
with ones and minus ones along the diagonals as a special
case. In addition, it possesses two advantageous features.
First, the eigenvalue spreads of the covariance matrices of
the blocking matrix outputs, as observed in various scenar-
ios, are decreased as compared with previous approaches,
thus leading to a faster convergence speed of the succeeding
LMS algorithm. Second, the new beamformer belongs to
a speci�c type of partially adaptive beamformers, wherein
higher-dimensional adaptive weights are mapped into lower-
dimensional ones, thus further reducing the computational
overhead. As a consequence, the computational complexity
called for is substantially reduced.
The eigenvalue spread and the dimension reduced are de-

termined by the parameters of the wavelet �lters as well as
the matrix structure of the blocking matrix. To facilitate
the choices of these parameters, some suggestive guidelines
are also provided, aiming at superior performance.

2. THE WAVELET-BASED GENERALIZED
SIDELOBE CANCELLER

2.1. Background Review

Consider an equispaced linear array composed of N omni-
directional sensor elements. The narrowband beamformer
output at time instant k, y(k), can be expressed as y(k) =

wHx(k), where w and x(k) denote the weight vector and

the response vector, respectively, and the superscript H de-
notes the Hermitian transpose. The response vector x(k),
which is assumed to consist of a single signal under the
interference of J jammers, can then be represented by

x(k) = ss(k)aS(�s) +

JX
i=1

si(k)aJ (�i) + n (1)

where ss(k) and si(k); i = 1; � � � ; J; are the waveforms of
the desired signal and jammers, respectively, aS(�s) =

[ej(1�n0)�s ; ej(2�n0)�s ; � � � ; ej(N�n0)�s ]T (T denotes matrix
transpose) is the signal vector with an arrival angle of �s, n0



is the reference point of the linear array, �s =
2�
�w

dw sin �s
with �w and dw being, respectively, the wavelength and
sensor distance, and n is the additive receiver white noise.
The e�ective linearly constrained minimum variance

(LCMV) beamformer determines the weight w by minimiz-
ing the output power under some appropriate linear weight
constraints and can be expressed as

min
w

wHRxw subject to CTw = f (2)

where Rx
�
= Efx(k)x(k)Hg is the data covariance matrix

with Ef�g denoting the expectation operator, C and f are
an N � S (full column rank) constraint matrix and an S �
1 �lter response vector, respectively. In particular, if we
consider the mainbeam derivative constraints, which have
been utilized to achieve a atter mainbeam response so that
the array is less sensitive to the steering errors [6, 7], the
(S � 1) order derivative constraints then require that

CT
Sw = [1; 0; � � � ; 0]T (3)

where the N�S matrix CS corresponds to the (S�1) order
derivative constraint matrix as

CS = [c0; c1; � � � ; cS�1] (4)

with ci = [(1 � n0)
i; � � � ; (N � n0)

i]T ; i = 0; 1; � � � ; S � 1.
The GSC reformulates the LCMV to facilitate more e�cient
implementations and performance analysis [5]. The basic
principle of the GSC is to decompose the weight vector w
into two orthogonal components as w = wf � Bwa. The
�rst component wf stands for the �xed target signal �lter
of the GSC, whereas the second component �Bwa denotes
the adaptive part. B satis�es the constraint of CTB = 0
and can prevent the desired signal from entering this path,
thus being referred to as a blocking matrix.

2.2. The Proposed Wavelet-Based GSC

Consider an N � (
�
N�MP

d

�
+ 1)(M � 1) ( b�c denotes

the largest integer smaller than or equal to �) matrix
B which is constituted by a set of P -regular M -band
wavelet �lters (of minimal length MP ) [3] with coe�cients
[hm(0),hm(1),� � �,hm(MP � 1)], m = 1; 2; � � � ;M � 1, as

BT =

2
664

H1

H2

...
HM�1

3
775 (5)

whereHm,m = 1; � � � ;M�1, is a (�N�MP
d

�
+1)�N matrix

Hm =

2
664

hm(0) � � � hm(MP � 1) � � �
oTd hm(0) � � � 0
...

. . .
. . .

...
oTd � � � � � � hm(MP � 1)

3
775

(6)
in which od is a d � 1 zero vector and d is a prespeci�ed
integer. It can be readily shown that all of the (

�
N�MP

d

�
+

1)(M � 1) columns of B form a linearly independent set by
using the orthogonality of the unitary wavelet �lters. Such
a choice of B possesses a distinctive feature of \nulling"
out the �rst few terms of the Taylor's series expansion of
the desired signal. More speci�cally, invoking the extended
\sum rule" for P -regular wavelet �lters,[8] viz.

X
k

(k0 + k)rhm(k) = 0 (7)

for any integer k0, m = 1; � � � ;M � 1; and r = 0; � � � ; P � 1,
leads to the following theorem [8]:

Theorem 1

The matrix B blocks the �rst (P�1) order Taylor's series
expansion of the desired signal components, i.e.

BT aS(P�1)(�s) = 0 (8)

where aS(P�1)(�s) denotes the �rst (P � 1) order Taylor's
series expansion of aS with respect to the look direction �0

aS(P�1)(�s) = aS(�0)+

P�1X
i=1

1

i!

@iaS(�s)

@�is

����
�s=�0

(�s��0)i (9)

Theorem 1 implies that if the desired signal is well ap-
proximated by the �rst P terms of the Taylor's series ex-
pansion (or the wavelet �lters in B have su�ciently high
regularity), then the desired signal will be \blocked" by the
B matrix as required by the blocking matrix of the GSC
structure. To follow, we will then employ such B as the
blocking matrix in our proposed GSC.
As a special case, when M = 2, P = 1, and d = 1, B

becomes an N � (N � 1) matrix B0 as

BT
0 =

1p
2

2
4

1 �1 0 � � � 0 0
...

. . .
. . .

. . .
. . .

...
0 0 0 � � � 1 �1

3
5 (10)

which simply corresponds to a normalized version of the
widely used blocking matrix [5].

2.3. Relationship with the LCMV Beamformer

To follow, we consider the relationship between the wavelet-
based GSC described above and the associated LCMV
beamformer with the derivative constraints. First, we show
that in this case, the columns of B are orthogonal to those
of CS [8].

Theorem 2

Assume that CS is an N � S derivative constraint ma-
trix of (4), then the wavelet-based matrix B as that of (5)

(assume that (
�
N�MP

d

�
+ 1)(M � 1) � N � S) satis�es

BTCS = 0 if S � P (11)

As a consequence of Theorem 2, if rank(CS)+rank(B) =
N , then the proposed GSC is equivalent to the correspond-
ing LCMV. If rank(CS) + rank(B) < N , in which the
columns of CS in conjunction with those of B do not span
RN , then wopt of the LCMV can now be expressed as

wopt = wf � ~Bwo
a, where ~B = [B;A] with A being an

N � (N � S � (
�
N�MP

d

�
+ 1)(M � 1)) matrix, which to-

gether with B and CS , form an orthogonal decomposition
of RN . The adaptive term now becomes

� ~Bwo
a = �B(BTRxB)

�1BTRxwf

�YA(ATRxYA)�1ATYHRxwf (12)

where Y = I � B(BTRxB)
�1BTRx. In this case, the

proposed GSC belongs to a partially adaptive beamformer
since only a portion of the (N�S) adaptive dimension is uti-
lized. The computational complexity called for is reduced
as those of partially adaptive beamformers addressed pre-
viously. More speci�cally, it can be shown that the array



output power of the proposed GSC, �2y, can be expressed
as

�
2
y = (�oy)

2 + k(ATRxYA)�
1

2ATYHRxwfk2 (13)

where (�oy)
2 �
= wH

optRxwopt denotes the output power of
the LCMV and k � k is the Euclidean norm. Therefore, the
output power of the proposed GSC, �2y, is greater than that

of the corresponding LCMV, (�oy)
2.

2.4. Choices of Parameters

In this subsection, we treat the issues of determining the
parameters M , P , and d involved in the proposed blocking
matrix. Our consideration will be based on the misadjust-
ment and the convergence rate of the LMS algorithm, and
the output performance of the beamformer.
First, we show that under some appropriate conditions,

the misadjustment and the eigenvalue spread of the block-
ing matrix output covariance matrix for the proposed GSC
satisfy the following inequalities [8]:

Theorem 3

If the desired signal, the jammers, and the contaminated
noise are uncorrelated, then the misadjustment M obeys
the following inequality:

M� �

2
(
j
N �MP

d

k
+ 1)(M

JX
i=1

�2Ji + (M � 1)�2n) (14)

where � is the step-size used in the LMS algorithm, �2Ji; i =
1; � � � ; J , and �2n stand for the power of the ith jammer and
contaminated white noise measured at each element of the
array, respectively. Similarly, the eigenvalue spread of Ru,

X (Ru), where Ru
�
= EfuuHg and u = BTx, satis�es

X (Ru) �
M(
�
N�MP

d

�
+ 1)

PJ

i=1
�2Ji + �2n�max(B

TB)

�2n�min(BTB)
(15)

where �max(B
TB) and �min(B

TB) denote the maximum

and minimum eigenvalues of BTB, respectively.
Then, following the same approach as that of [2], we will

choose the parameters M , P , and d to minimize the upper
bounds of the inequalities of (14) and (15). We can observe
that both the upper bounds of (14) and (15) decrease as P
increases (for �xed d and M). It follows therefore that the
choice of wavelet �lters with high regularity is preferred for
smaller M and X (Ru).

As for the choice of d, note that since tr(BTB) =

(
�
N�MP

d

�
+1)(M�1), where tr(�) is the matrix trace oper-

ator, we can readily deduce that �max(B
TB) � tr(BTB) =

(
�
N�MP

d

�
+1)(M�1) and �min(B

TB) � 1. Also, since the

upper bound of (15) is dictated mainly by the eigenvalue

spread of (BTB), we can then choose d to minimize this

value. Recall that when d is a multiple of M , BTB = I for
which �max(B

TB) = �min(B
TB) = 1. As a result, we can

choose d as a multiple of M which then yields a smaller up-
per bound of (15) (for �xed P and M). In particular, when
M = 2, choosing d = 2 will yield a smaller upper bound
of (15) as compared with that by using d = 1, which was
employed by B0 of (10). This explains why the proposed
approach in general converges more rapidly than that of
previous work, as the latter is based on B0.
The chosen parameters should also maximize the output

signal-to-interference-plus-noise-ratio (SINR). First, note

that a wavelet �lter with high regularity exhibits a fast de-
caying response. Since the wavelet �lters stand for the high-
pass spatial �ltering, high regularity of the wavelet �lters
will then form a sharper and wider null in the low spatial
frequency part of the spatial response of the blocking ma-
trix. As such, the blocking matrix will block not only the
desired signal but also the interfering signals which are sup-
posed to pass through. Therefore, the SINR will somehow
degrade if the regularity P of the wavelet �lters is chosen
widely large. Additionally, from [3], we know that (M � 1)
wavelet �lters with a larger M will provide better energy
compaction, leading to a narrow null in the low spatial fre-
quency part of blocking matrix spatial response. Along the
same line, a larger M is therefore preferred, as it will cause
less degradation of the resulting SINR.

3. EXPERIMENTAL RESULTS

Some simulations are carried out in this section to access the
proposed wavelet-based approach. To follow, we consider
two examples, both of which are based on linear equispaced
arrays consisting of N omnidirectional sensors spaced one
half wavelength apart. The GSC, with various blocking
matrices along with the derivative constraints, is utilized
for the determination of beamformer weights. The resulting
array output beampatterns are all based on an ensemble
average of 50 independent trials.
Example 1 : The array considered is composed of 15 sen-
sors. The interference environment consists of one jammer
with an arrival direction of 55o. The gain constraint, i.e.
C1, and � = 9�10�6 are used for the GSC. The interference
to noise ratio (INR) is 30 dB and the contaminated white
Gaussian noise (WGN) is 10 dB. The resulting array out-
put beampatterns by using B0 of (10) and by the proposed
blocking matrix with M = 3, d = 3, and P = 3 (B is now
a 15� 6 matrix) are shown in Figs. 1, and 2, respectively.
Example 2 : The array considered is composed of 48 sen-
sors. The interference environment now consists of two jam-
mers arriving from directions of (�45o; 50o). The 2nd or-
der derivative constraints, i.e. C3 (with n0 = 24), and
� = 5 � 10�6 are used for the GSC. The INR's are equal
to 20 dB and 30 dB for jammers with directions of arrival
�45o and 50o, respectively, whereas the WGN has SNR 10
dB. The resulting array output beampatterns by using a
(normalized) N � (N � 3) blocking matrix B2 [9], where

BT
2 =

1p
20

2
4

1 �3 3 �1 � � � 0 0
...

. . .
. . .

. . .
. . .

. . .
...

0 � � � 0 1 �3 3 �1

3
5 ; (16)

and by the proposed one with M = 6, d = 6, and P = 7
(B is now a 48 � 10 matrix) are shown in Figs. 3 and 4,
respectively.
From both examples, we can �nd that the new wavelet-

based GSC can form deep nulls more rapidly at the jammer
directions. This is attributed to the fact that both the mis-
adjustment and X (Ru) are signi�cantly reduced as com-
pared with those of previous approaches [8]. Additionally,
the dimensions of the weight vectorwa involved in the adap-
tive processing also decrease, thus calling for lower compu-
tational overhead in each iteration. As such, the overall
computational complexity is substantially reduced.

4. CONCLUSION

In this paper, we describe a low complexity wavelet-based
GSC, in which the blocking matrix is constituted by a
set of regular M -band wavelet �lters. This new block-
ing matrix can block the desired signal as required, pro-
vided that the employed wavelet �lters are highly regular.



Furthermore, the outputs of the blocking matrix not only
have reduced dimensions, but their covariance matrices in
general also have smaller misadjustments and eigenvalue
spreads. Consequently, the array can form the desired null-
steering beampatterns with substantially reduced computa-
tional complexity.
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Figure 1. The outputbeam pattern of Example 1 by
using the blocking matrix of (10).
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Figure 2. The output beampattern of Example 1 by
using the proposed blocking matrix.
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Figure 3. The output beampattern of Example 2 by
using the blocking matrix of (16).
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Figure 4. The output beampattern of Example 2 by
using the proposed blocking matrix.


