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ABSTRACT v
The problem of equalization for spread-response precoding sys- ("l [~ 1 vln] Ar\ il Postodd— "
tems based on minimum mean-square error (MMSE) estimates of % ~ \T
the fading channel coefficients is considered. These systems are

attractive, low complexity alternatives to the combination of in- aln] b[n]

terleaving and error-control coding for achieving time diversity in

fading environments. To make the performance of these systems

robust to channel estimation errors, we derive the linear equal- Figure 1: Narrowband spread-response precoding system model.

izer at the receiver that maximizes the effective signal-to-noise-

and-interference ratio (SNIR) subject to uncertainty in the channel

measurements. We examine the bit-error rate performance and deat the receiver based on minimum mean-square error (MMSE) es-

velop fixed and dynamic solutions to the associated problem of op-timates of the fading channel is addressed in Section 3. In addi-

timal power allocation between the data transmissions and channetion, the system performance strongly depends on the tigtegis

measurements. The effectiveness of these algorithms is demonpower allocation among the data transmissions and channel mea-

strated through measurements obtained from an indoor wirelesssurements. Based on a representative channel evolution model de-

setting. scribed in Section 4, the optimal allocation strategy is developed
in Section 5 and compared to fixed allocation strategies. We also
include results from an implementation of these algorithms in an

1. INTRODUCTION indoor wireless communications system testbed.

Due to channel distortions such as intersymbol interference (ISI)
and signal fading, transmissions over wireless channels often ex- 2. SYSTEM MODEL
hibit bit-error performance dramatically inferior to transmissions . ) . )
over traditional additive Gaussian white-noise channels. The com-Fi9- 1 depicts a discrete-time, baseband equivalent model for the
bination of interleaving with error-control coding is a common ap- ¢lass of systems we consider for narrowband communication over
proach for combating temporal variations of these channels [1]; ime-selective wireless channels. The symbol sequefieeis a
however, spread-response precoding systems [2], [3] represent #8r0-mean, white sequence with enefgy Channel coding is per-
particularly appealing alternative to interleaving in terms of their formed by the spread-response precoder, a linear filter that gener-
performance-complexity considerations. These systems tempo-ates the transmit sequengle:] from =[r]. The channel corrupts
rally distribute the energy of each symbol by means of dispersive ¥[7?] With complex-valued fading[n] and additive noise[n], to
linear filtering before transmission, allowing the receiver to effec- Produce the received sequenge]. At the receiver, symbol esti-
tively average the variations of the channel through appropriate matesi[n] are obtained by means of equalization (multiplication
equalization and matched-filtering. Conveniently, spread-responsé?y b[72]) and finally postcoding with the inverse of the precoding
precoding systems also do not require additional power or band- liter.
width.

In developing the theory of spread-response precoding, [2] de-2.1. Rayleigh Fading Channel
termines the linear equalizer that maximizes the effective signal-
to-noise-and-interference ratio (SNIR) based on complete knowl-
edge of the fading channel response. In practice, many equaliza
tion algorithms rely on an estimate of the channel, and their perfor-
mance can be severely degraded by even small channel estimatio
errors. To prevent such sensitivity in spread-response precodin
systems, the problem of determining the optimal linear equalizer

The wireless channel model represented in Fig. 1 captures the ef-
fects of time-selective fading and additive noise. Such a model is
appropriate for wireless communication indoors, where the coher-
nce bandwidth of the channel is generally larger than the signal
andwidth, and the coherence time of the channel is typically on
he order of several symbol periods.

Statistically, we model the fading[r] as a zero-mean, sta-
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Table 1: Example impulse responsesfor= 8.

Figure 2: Filter bank structure of the linear, periodically time-

varying spread-response precoder. SNIR in the symbol estimates as

- [Efat]

_ 7 2
Var[ab] + ¢ (Var{b] + [E[5]|*) @

The effectiveness of channel estimation, and therefore, system per-
formance, will generally depend on the dynamics/pf], andwe  \peres = A7/£. and where we have used notation to explicitly
consider a convenient model for these dynamics in Section 4. reflect the dependence on the choice of equalizer.

The additive noisev[r] often represents disturbances caused
by receiver thermal noise, and more importantly, other sources of
interference. We modelb[r] as a white, complex Gaussian se-
guence with varianc/.

3. OPTIMAL EQUALIZERS BASED ON MMSE
CHANNEL ESTIMATES

In practice, the bit-error probability for spread-pesse precoding
2.2. Spread-Response Precoding systems decreases monotonically with effective SNIR; thus, a nat-
ural approach is to select the equalizer that maximizes (2). If we
constrain the equalizer to be a function of the MMSE estiripié
of the channel coefficient, we will show that the optimal equalizer
satisfies

Spread-response precodingfigates the fading distortion by ap-
plying a linear, periodically time-varying (LPTV) system of the
form shown in Fig. 2 to the symbol sequence at the transmitter.
Using the filter design algorithm in [3], the impulse responses
ho[n] andh, [n] are of finite-length and take values a*[n]
bln] oc ———=—, (©)
|a[n]]” + ¢

wheret’ = ¢ 4+ o2, ands? represents the mean-square error in the
since unit-energy sequences of this form most effectively distribute channel estimates. Before developing this result, we make several
each symbol's energy ové¥ samples. Furthermore, the particu- preliminary remarks. First, the optimal equalizer depends on the
lar sequences are chosen so that the system in Fig. 2 constitutesrean-square error of the channel estimate, implying that the two
an orthogonal transformation of the input sequence. For example problems of channel estimation and equalization are coupled. Sec-
sequences of lengthi = 8 are given in Table 1. Prototypical ond, (3) is consistentwith the known channel solutionras+ 0,
impulse responses can be upsampled to match the coherence chane havei[r] — a[r] and¢’ — ¢, which gives the form originally
acteristics of the channel with no additional cost in computation, derivedin [2]. Third, (3) correspondsto the optimal equalizer for a
as pointed out [3]. “known channel’a[r] with additive noise of intensitf. o2 + /.

At the receiver, a linear equalizer ttiplies the eceived se- Here the first term is due to channel estimation error and is un-
quencer[n] by the sequenddn] to partially compensate for the ~ correlated with the input sequence, while the second term is due
effects of fading. Following equalization, the precoding process is to the original additive noise [4]. These observations suggest that
inverted by the associated LPTV postcoder [3]. the approximation (1) still holds if the equalizer employs MMSE

With spread-response precoding systems, the composite chanestimates of the channel.
nel formed by the precoder, fading channel, equalizer, and post-  To verify (3), we first rewrite (2) in a manner analogous to that
coder is effectively transformed into an additive marginally Gaus- used in [2], namely,
sian white-noise channel [2], [3]. Specifically, as the length of a

hm[n] = +1/V/N, forn=0,1,...,N—1, m=0,1.

1

precoding filter becomes large compared to the coherence time of (b)) = Tial —1 4)
the channel, the symbol estimates may be approximated as fo(b) ~
where
#[n] =~ Elab] z[n] + z[n], foreachn, 1)
|E[ab]|”
() = 77— ®)

where we have dropped the dependence of the channel and equal- - E[(|a|2 + 5) |b|2] ’
izer statistics om due to stationarity. Moreover, in the limit as
N — oo, the approximation in (1) becomes exact in the mean- and note that maximizing (5) is equivalent to maximizing (4).

square sense. Hetgq] is a zero-mean, complex marginally Gaus- We substitute the relationship
sian white-noise sequence that is uncorrelated with the irjpyt )
The variance of[n] is given by a[n] = a[n] + e[n]

o2 = Var[ab] + N (Var[b] n |E[b]|2) into (5), wheree[r] is the channel estimation error, to obtain
|E[ab] 4 Eleb])?

E[|ab]*]+2 Re{E [ae*[b]*] }J+E[jeb]]+£E[B]7] ©

where the first term is due to ISI and the second term is due to the ¢(b) =
additive noisew[n]. Accordingly, we may compute the effective




Sinced[n] is an MMSE estimate of the channel, it possesses use-
ful properties that simplify the expression (6). Recall thfat] is
unbiased, so that

Ele[r]] =0, foreachn. (7)

Furthermore, from the orthogolits principle, e[r] is uncorrelated
with any function of the observations, and therefore, any function
of a[n], i.e,

E[f(a[n])e*[n]] =0, foreachn 8)
and anyf(-). Applying (8) to (6), we obtain
_ |Efab]|*
$() = o ©)

[(lal* + &) 1pI°]

with ¢’ = ¢ + o2. Finally, by the Schwartz inequality, we have
a
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[E[ab]]> = E[
|a

SE[T
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with equality if and only ift[r] is of the form (3).
The effective SNIR performance for this equalizer can readily
be computed [4]

1
C’eCIEl (C')
where¢’ = ¢'/o2 andE1 (-) denotes the exponential integral

/me
v

t

1, (10)

Ymax =

E1 (l/) = dt,
As the approximation (1) suggests, a good estimate of the bit-
error probability for symbol-by-symbol detection associated with
the optimal equalizer (3) can be obtained from the correspond-
ing bit-error probability for symbol-by-symbol detection over an
additive Gaussian white-noise channel with signal-to-noise ratio
(SNR) given by (10). For example, if[»] is a quadrature phase-
shift keying (QPSK) sequence, we can approximate the bit-error
probability of these systems as [1]

[ere]

Pr(e) % i) = o= [ ™ Par

VvV Ymax

We should emphasize that similar results can in principle be

Specifically, we consider the following baseband equivalent,
first-order state-space model for the fading proeg¢ss

T—1

am+u:< >am+qm
V& a[n] + wln)

In the state evolution equation (12&)js a measure of the chan-
nel coherence time (in symbols), arfh] is a white complex
Gaussian sequence that is independen{f for k¥ < n. Note
thatv[r] has mean zero and variance appropriately chosen so that
Var[a[n]] o2. The observation equation (12b) corresponds
to pilot-tone measurements of the channel, witgrelenotes the
pilot-tone energy per symbol. The additive noigg:] is another
white, complex Gaussian sequence that is independedmirdf
w[n], andv[n] and has variancd/.

The Kalman filter associated with (12) provides the MMSE
estimatei[r]. Furthermore, techniques for joint estimation of the
channel state[n] as well as the model parameteesy, 7, based
on the Expectation-Maximization (EM) algorithm are also readily
developed, and can be extended to higher-order models. In addi-
tion, the performance of the estimator, in terms of the mean-square
estimation errow? as a function of pilot-tone energ,, can be
computed from the Riccati equation and used to characterize sys-
tem performance [4].

(12a)

q[n] (12b)

5. POWER ALLOCATION AND SYSTEM
PERFORMANCE

System performance ultimately depengi®n allocation of trans-
mitter power between data signaling and channel measurements.
For a fixed amount of transmit enerfy= &: + &, per symbol, we
examine system performance as a function of the pilot-tone energy
ratio0 < &£,/€ < 1. Fig. 3 shows the result of numerically com-
puting optimal power allocations to maximize the effective SNIR
(10). As Fig. 3 indicates, the optimal allocation strategy varies
with channel coherence time and, to a lesser extent, the receiver
input SNR.

In Fig. 4, we compare the QPSK bit-error probability (11) for
systems employing the optimal power allocations from Fig. 3 and
the fixed power allocatiod,, /£ = 0.15. As Fig. 4 indicates, the
fixed allocation strategy incurs a relatively modest penalty in sys-
tem performance for a wide range of channel coherence times.

Fig. 5 illustrates results from a preliminary implementation of
these spread-response precoding systems within the indoor wire-
less communications laboratory in the Digital Signal Processing
Group at M.I.T. Fig. 5 shows scatter plots (before hard-limiting)
from transmission of 2000 QPSK symbols over a time-varying in-

obtained for the frequency-selective channelif the error kernel cor- door channel, both with and without spread-response precoding.

responds to a wide-sense stationary, uncorrelated scattering chanafe see from inspection of this figure that finite-length spread-

nel [4]. However, the validity of this uncorrelated scattering ap- response precoding significantly changes the interference charac-

proximation for the error kernel warrants further investigation. teristics at the output of the receiver. These results are consistent
with those obtained via computer simulations.

4. CHANNEL MODELING AND ESTIMATION

The mean-square channel estimation estodepends on the par-
ticular channel dynamics in adidn to the anount of transritter
power allocated to channel measurements. We examine the im-
pact of these variations on the system performance in terms of the
effective SNIR (10) in the context of a simple channel evolution
model.



Optimal Pilot-Tone Energy Ratio Ep/E

Receiver Input SNR [dB]

Figure 3: Optimal pilot-tone energy rati), /£ versus receiver
input SNR. The successively lower curves correspond to fading
channels with coherence times= 10, 100, 1000, 10000, and
100000 symbols, respectively.

Bit-Error Probability Pr(e)

Figure 4: System performance with optimal and suboptimal trans-
mitter power allocation. The sgessively lower solid curves corre-
spond to the optimal bit-error performance of QPSK signaling for
fading channels with coherence times= 10, 1000, and 100000
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Figure 5: Laboratory receiver output scatter plots (a) without
spread-response precoding, and (b) with lengte= 128 spread-
response precoding. The symbol estimatpsg are indicated by

“won

Symbol estimates resulting in erroneous decisions after hard-

limiting are indicated by ",

(1]
(2]

(3]
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