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ABSTRACT

The problem of equalization for spread-response precoding sys-
tems based on minimum mean-square error (MMSE) estimates of
the fading channel coefficients is considered. These systems are
attractive, low complexity alternatives to the combination of in-
terleaving and error-control coding for achieving time diversity in
fading environments. To make the performance of these systems
robust to channel estimation errors, we derive the linear equal-
izer at the receiver that maximizes the effective signal-to-noise-
and-interference ratio (SNIR) subject to uncertainty in the channel
measurements. We examine the bit-error rate performance and de-
velop fixed and dynamic solutions to the associated problem of op-
timal power allocation between the data transmissions and channel
measurements. The effectiveness of these algorithms is demon-
strated through measurements obtained from an indoor wireless
setting.

1. INTRODUCTION

Due to channel distortions such as intersymbol interference (ISI)
and signal fading, transmissions over wireless channels often ex-
hibit bit-error performance dramatically inferior to transmissions
over traditional additive Gaussian white-noise channels. The com-
bination of interleaving with error-control coding is a common ap-
proach for combating temporal variations of these channels [1];
however, spread-response precoding systems [2], [3] represent a
particularly appealing alternative to interleaving in terms of their
performance-complexity considerations. These systems tempo-
rally distribute the energy of each symbol by means of dispersive
linear filtering before transmission, allowing the receiver to effec-
tively average the variations of the channel through appropriate
equalization and matched-filtering. Conveniently, spread-response
precoding systems also do not require additional power or band-
width.

In developing the theory of spread-response precoding, [2] de-
termines the linear equalizer that maximizes the effective signal-
to-noise-and-interference ratio (SNIR) based on complete knowl-
edge of the fading channel response. In practice, many equaliza-
tion algorithms rely on an estimate of the channel, and their perfor-
mance can be severely degraded by even small channel estimation
errors. To prevent such sensitivity in spread-response precoding
systems, the problem of determining the optimal linear equalizer
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Figure 1: Narrowband spread-response precoding system model.

at the receiver based on minimum mean-square error (MMSE) es-
timates of the fading channel is addressed in Section 3. In addi-
tion, the system performance strongly depends on the transmitter's
power allocation among the data transmissions and channel mea-
surements. Based on a representative channel evolution model de-
scribed in Section 4, the optimal allocation strategy is developed
in Section 5 and compared to fixed allocation strategies. We also
include results from an implementation of these algorithms in an
indoor wireless communications system testbed.

2. SYSTEM MODEL

Fig. 1 depicts a discrete-time, baseband equivalent model for the
class of systems we consider for narrowband communication over
time-selective wireless channels. The symbol sequencex[n] is a
zero-mean, white sequence with energyEs. Channel coding is per-
formed by the spread-response precoder, a linear filter that gener-
ates the transmit sequencey[n] from x[n]. The channel corrupts
y[n] with complex-valued fadinga[n] and additive noisew[n], to
produce the received sequencer[n]. At the receiver, symbol esti-
matesx̂[n] are obtained by means of equalization (multiplication
by b[n]) and finally postcoding with the inverse of the precoding
filter.

2.1. Rayleigh Fading Channel

The wireless channel model represented in Fig. 1 captures the ef-
fects of time-selective fading and additive noise. Such a model is
appropriate for wireless communication indoors, where the coher-
ence bandwidth of the channel is generally larger than the signal
bandwidth, and the coherence time of the channel is typically on
the order of several symbol periods.

Statistically, we model the fadinga[n] as a zero-mean, sta-
tionary, complex-valued, circularly-symmetric Gaussian sequence
with variance�2a. (For simplicity of exposition, we refer to all such
sequences simply as “complex Gaussian” sequences, and we point
out explicit deviations from these properties whenever necessary.)
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Figure 2: Filter bank structure of the linear, periodically time-
varying spread-response precoder.

The effectiveness of channel estimation, and therefore, system per-
formance, will generally depend on the dynamics ofa[n], and we
consider a convenient model for these dynamics in Section 4.

The additive noisew[n] often represents disturbances caused
by receiver thermal noise, and more importantly, other sources of
interference. We modelw[n] as a white, complex Gaussian se-
quence with varianceN .

2.2. Spread-Response Precoding

Spread-response precoding mitigates the fading distortion by ap-
plying a linear, periodically time-varying (LPTV) system of the
form shown in Fig. 2 to the symbol sequence at the transmitter.
Using the filter design algorithm in [3], the impulse responses
h0[n] andh1[n] are of finite-length and take values

hm[n] = �1=pN; for n = 0; 1; : : : ;N � 1, m = 0; 1.

since unit-energy sequencesof this form most effectively distribute
each symbol's energy overN samples. Furthermore, the particu-
lar sequences are chosen so that the system in Fig. 2 constitutes
an orthogonal transformation of the input sequence. For example,
sequences of lengthN = 8 are given in Table 1. Prototypical
impulse responses can be upsampled to match the coherence char-
acteristics of the channel with no additional cost in computation,
as pointed out [3].

At the receiver, a linear equalizer multiplies the received se-
quencer[n] by the sequenceb[n] to partially compensate for the
effects of fading. Following equalization, the precoding process is
inverted by the associated LPTV postcoder [3].

With spread-response precoding systems, the composite chan-
nel formed by the precoder, fading channel, equalizer, and post-
coder is effectively transformed into an additive marginally Gaus-
sian white-noise channel [2], [3]. Specifically, as the length of a
precoding filter becomes large compared to the coherence time of
the channel, the symbol estimates may be approximated as

x̂[n] � E[ab] x[n] + z[n]; for eachn, (1)

where we have dropped the dependence of the channel and equal-
izer statistics onn due to stationarity. Moreover, in the limit as
N ! 1, the approximation in (1) becomes exact in the mean-
square sense. Herez[n] is a zero-mean, complex marginally Gaus-
sian white-noise sequence that is uncorrelated with the inputx[n].
The variance ofz[n] is given by

�2z = Var[ab] +N �
Var[b] + jE[b]j2� ;

where the first term is due to ISI and the second term is due to the
additive noisew[n]. Accordingly, we may compute the effective

n 0 1 2 3 4 5 6 7p
8 h0[n] +1 +1 +1 -1 +1 +1 -1 +1p
8 h1[n] +1 +1 +1 -1 -1 -1 +1 -1

Table 1: Example impulse responses forN = 8.

SNIR in the symbol estimates as

(b) =
jE[ab]j2

Var[ab] + �
�
Var[b] + jE[b]j2� ; (2)

where� = N =Es and where we have used notation to explicitly
reflect the dependence on the choice of equalizer.

3. OPTIMAL EQUALIZERS BASED ON MMSE
CHANNEL ESTIMATES

In practice, the bit-error probability for spread-response precoding
systems decreases monotonically with effective SNIR; thus, a nat-
ural approach is to select the equalizer that maximizes (2). If we
constrain the equalizer to be a function of the MMSE estimateâ[n]
of the channel coefficient, we will show that the optimal equalizer
satisfies

b[n] / â�[n]

jâ[n]j2 + �0
; (3)

where�0 = �+�2e, and�2e represents the mean-square error in the
channel estimates. Before developing this result, we make several
preliminary remarks. First, the optimal equalizer depends on the
mean-square error of the channel estimate, implying that the two
problems of channel estimation and equalization are coupled. Sec-
ond, (3) is consistent with the known channel solution: as�2e ! 0,
we havêa[n]! a[n] and�0 ! �, which gives the form originally
derived in [2]. Third, (3) corresponds to the optimal equalizer for a
“known channel”̂a[n] with additive noise of intensityEs �2e +N .
Here the first term is due to channel estimation error and is un-
correlated with the input sequence, while the second term is due
to the original additive noise [4]. These observations suggest that
the approximation (1) still holds if the equalizer employs MMSE
estimates of the channel.

To verify (3), we first rewrite (2) in a manner analogous to that
used in [2], namely,

(b) =
1

1=�(b)� 1
; (4)

where

�(b) =
jE[ab]j2

E
��jaj2 + �

� jbj2� ; (5)

and note that maximizing (5) is equivalent to maximizing (4).
We substitute the relationship

a[n] = â[n] + e[n] ;

into (5), wheree[n] is the channel estimation error, to obtain

�(b)=
jE[âb] + E[eb]j2

E
�jâbj2�+2Re

�
E
�
âe�jbj2�	+E

�jebj2�+�E
�jbj2� : (6)



Sinceâ[n] is an MMSE estimate of the channel, it possesses use-
ful properties that simplify the expression (6). Recall thatâ[n] is
unbiased, so that

E[e[n]] = 0; for eachn. (7)

Furthermore, from the orthogonality principle,e[n] is uncorrelated
with any function of the observations, and therefore, any function
of â[n], i.e.,

E[f(â[n]) e�[n]] = 0; for eachn (8)

and anyf(�). Applying (8) to (6), we obtain

�(b) =
jE[âb]j2

E
��jâj2 + �0

� jbj2� ; (9)

with �0 = � + �2e . Finally, by the Schwartz inequality, we have

jE[âb]j2 =
������E
2
4 âq

jâj2 + �0
� b
q
jâj2 + �0

3
5
������
2

� E

� jâj2
jâj2 + �0

�
� E��jâj2 + �0

� jbj2� ;

with equality if and only ifb[n] is of the form (3).
The effective SNIR performance for this equalizer can readily

be computed [4]

max =
1

� 0e�0E1(� 0)
� 1 ; (10)

where� 0 = �0=�2â andE1(�) denotes the exponential integral

E1(�) =

Z 1

�

e�t

t
dt; � > 0 :

As the approximation (1) suggests, a good estimate of the bit-
error probability for symbol-by-symbol detection associated with
the optimal equalizer (3) can be obtained from the correspond-
ing bit-error probability for symbol-by-symbol detection over an
additive Gaussian white-noise channel with signal-to-noise ratio
(SNR) given by (10). For example, ifx[n] is a quadrature phase-
shift keying (QPSK) sequence, we can approximate the bit-error
probability of these systems as [1]

Pr(e) � Q(pmax) =
1p
2�

Z 1

p
max

e�t
2=2dt : (11)

We should emphasize that similar results can in principle be
obtained for the frequency-selective channel if the error kernel cor-
responds to a wide-sense stationary, uncorrelated scattering chan-
nel [4]. However, the validity of this uncorrelated scattering ap-
proximation for the error kernel warrants further investigation.

4. CHANNEL MODELING AND ESTIMATION

The mean-square channel estimation error�2e depends on the par-
ticular channel dynamics in addition to the amount of transmitter
power allocated to channel measurements. We examine the im-
pact of these variations on the system performance in terms of the
effective SNIR (10) in the context of a simple channel evolution
model.

Specifically, we consider the following baseband equivalent,
first-order state-space model for the fading processa[n]:

a[n+ 1] =

�
� � 1

�

�
a[n] + v[n] (12a)

q[n] =
pEp a[n] + ~w[n] (12b)

In the state evolution equation (12a),� is a measure of the chan-
nel coherence time (in symbols), andv[n] is a white complex
Gaussian sequence that is independent ofa[k] for k � n. Note
thatv[n] has mean zero and variance appropriately chosen so that
Var[a[n]] = �2a. The observation equation (12b) corresponds
to pilot-tone measurements of the channel, whereEp denotes the
pilot-tone energy per symbol. The additive noise~w[n] is another
white, complex Gaussian sequence that is independent ofa[n],
w[n], andv[n] and has varianceN .

The Kalman filter associated with (12) provides the MMSE
estimatêa[n]. Furthermore, techniques for joint estimation of the
channel statea[n] as well as the model parameters,e.g., � , based
on the Expectation-Maximization (EM) algorithm are also readily
developed, and can be extended to higher-order models. In addi-
tion, the performance of the estimator, in terms of the mean-square
estimation error�2e as a function of pilot-tone energyEp, can be
computed from the Riccati equation and used to characterize sys-
tem performance [4].

5. POWER ALLOCATION AND SYSTEM
PERFORMANCE

System performance ultimately dependsupon allocation of trans-
mitter power between data signaling and channel measurements.
For a fixed amount of transmit energyE = Es+Ep per symbol, we
examine system performance as a function of the pilot-tone energy
ratio 0 < Ep=E < 1. Fig. 3 shows the result of numerically com-
puting optimal power allocations to maximize the effective SNIR
(10). As Fig. 3 indicates, the optimal allocation strategy varies
with channel coherence time and, to a lesser extent, the receiver
input SNR.

In Fig. 4, we compare the QPSK bit-error probability (11) for
systems employing the optimal power allocations from Fig. 3 and
the fixed power allocationEp=E = 0:15. As Fig. 4 indicates, the
fixed allocation strategy incurs a relatively modest penalty in sys-
tem performance for a wide range of channel coherence times.

Fig. 5 illustrates results from a preliminary implementation of
these spread-response precoding systems within the indoor wire-
less communications laboratory in the Digital Signal Processing
Group at M.I.T. Fig. 5 shows scatter plots (before hard-limiting)
from transmission of 2000 QPSK symbols over a time-varying in-
door channel, both with and without spread-response precoding.
We see from inspection of this figure that finite-length spread-
response precoding significantly changes the interference charac-
teristics at the output of the receiver. These results are consistent
with those obtained via computer simulations.
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Figure 3: Optimal pilot-tone energy ratioEp=E versus receiver
input SNR. The successively lower curves correspond to fading
channels with coherence times� = 10, 100, 1000, 10000, and
100000 symbols, respectively.
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Figure 4: System performance with optimal and suboptimal trans-
mitter power allocation. The successively lower solid curves corre-
spond to the optimal bit-error performance of QPSK signaling for
fading channels with coherence times� = 10, 1000, and 100000
symbols, respectively. The successively lower dashed curves de-
note the associated bit-error rates with the fixed power allocation
Ep=E = 0:15. Finally, the dotted curve depicts the bit-error prob-
ability for the case in which the channel is perfectly known.
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Figure 5: Laboratory receiver output scatter plots (a) without
spread-response precoding, and (b) with lengthN = 128 spread-
response precoding. The symbol estimatesx̂[n] are indicated by
“ �”. Symbol estimates resulting in erroneous decisions after hard-
limiting are indicated by “�”.
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