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ABSTRACT
In this paper, we study how discriminative and Maximum
Likelihood (ML) techniques should be combined in order to
maximize the recognition accuracy of a speaker-independent
Automatic Speech Recognition (ASR) system that includes
speaker adaptation. We compare two training approaches for
speaker-independent case and examine how well they perform
together with four different speaker adaptation schemes. In a
noise robust connected digit recognition task we show that the
Minimum Classification Error (MCE) training approach for
speaker-independent modelling together with the Bayesian
speaker adaptation scheme provide the highest classification
accuracy over the whole lifespan of an ASR system. With the
MCE training we are capable of reducing the recognition er-
rors by 30% over the ML approach in the speaker-independent
case. With the Bayesian speaker adaptation scheme we can
further reduce the error rates by 62% using only as few as five
adaptation utterances.

1. INTRODUCTION

ASR has not been widely used until quite recently. During the
four decades of research many important milestones have been
reached. One of the milestones, the change from speaker-
dependent speech recognition technology into speaker-
independent technology was essential from the general accept-
ability of ASR point of view. Speaker-independent technology
enables the direct use of ASR systems without users having to
train the systems to recognize their voice.

A high recognition accuracy is also an essential requirement
for an ASR system. Before a particular ASR service or product
can be released to the market, the developers must go through
a careful self-criticism process. The recognition accuracy must
be at a certain level in order to gain users’ acceptance.
Speaker-independence brings up one problem regarding the
recognition accuracy. This is due to the fact that the speaker-
independence is not achieved by utilizing truly speaker-
independent features in recognition. The speaker-independence
is achieved by collecting speech samples from large amounts
of people representing well the whole target population.
Speaker-independent speech models are then created by effec-
tively averaging the collected speech samples. As a result, the
averaged model space becomes more confusable and it is well
known that there is about an order of magnitude difference
between the speaker-dependent and speaker-independent rec-
ognition accuracies.

The recognition accuracy problem of the speaker-independent
case becomes even more severe when one practical limitation
is still considered. Namely, the amount of collected speech
samples is always finite, and all speaker types cannot be well
represented in the training material. This means that there will
be speakers for whom the recognition accuracy is much
smaller than for the others due to language, dialect, pronuncia-

tion etc. variations. Nevertheless, a high speaker-independent
recognition performance remains a fundamental objective of
practical speech recognition systems. There are currently two
ways to achieve this objective. The first alternative approach is
to collect a huge amount of training data and create very com-
plex speech models that can describe all speakers well enough.
The second approach is to have less training data and to rely
more on speaker adaptation.

In this paper, we have selected the latter approach. Our target
is to cope with simple HMM structures and to find a combina-
tion of discriminative and Maximum Likelihood training
schemes that maximizes the recognition accuracy during the
whole lifespan of an ASR system with a relatively small
amount of training and speaker-adaptation data. Noise robust
and hands-free voice dialling being an attractive target appli-
cation, this paper focuses particularly on noise robust con-
nected digit recognition in a car environment.

2. SPEAKER-INDEPENDENT TRAINING

2.1 Maximum Likelihood Training Approach

The speaker-independent models are conventionally trained
according to the Maximum Likelihood (ML) estimation prin-
ciple, given below:

max ( | )P X λ ,                                      (1)

where λ  is the model for the utterances X. The widely used
ML estimation tries to maximize the likelihood of utterances in
the training data independently model by model, and thus, the
recognition accuracy is maximized only indirectly.

2.2 Discriminative Training Approach

In the literature, many discriminative training approaches have
been suggested that try to maximize the recognition accuracy
explicitly for a given vocabulary. In this paper, the Minimum
Classification Error (MCE) and the Maximum Mutual Infor-
mation (MMI) techniques were selected from the class of dis-
criminative methods. Both of them can be regarded as a con-
strained optimization problem and they can be formulated
similarly [1,3,7,9].

2.2.1 Minimum Classification Error Approach

In the MCE approach, the misclassification measure has the
following formulation:
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The loss function is traditionally selected to be of a sigmoid
type in the form:
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In the previous formulas ( )P Xlog λ  represents the log-

likelihood in the Viterbi sense for the  model λ  on utterance
X, N is the total number of models, α β δ> >0 0, ,  are optimi-

zation control parameters and λc  represents the correct model

for X.

The objective function is defined as

[ ]Obj E l X= ( ) ,                                      (4)

and the target is to minimize the expected loss over all the
utterances from the adaptation data.

It can be seen from the the limit α δ→ ∞ → ∞,  of the loss
function that it approaches a decision step function and the
objective will be the minimization of the classification error
rate.

2.2.2 Maximum Mutual Information Approach

The objective of the MMI approach is to maximize the fol-
lowing expression for each of the training utterances:
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The main difference between the discriminative approaches
presented above is that MCE is focused on the classification
boundaries while MMI assigns greater weight in training to the
most incorrect classifications [9].

3.  SPEAKER ADAPTATION

Speaker adaptation can be applied in such cases in which the
user is known by the system. A typical example would be the
voice control of a mobile phone or a PC that are considered
highly personal devices. In the case of multi-user systems,
speaker adaptation can be applied if the user can be identified.

The speaker adaptation process can be performed in several
different ways depending on the use and identity of the adap-
tation data. If the identity of the adaptation data is known by
the system, i.e., the system knows what words are spoken, the
adaptation is called supervised. Otherwise the adaptation proc-
ess is called unsupervised. The adaptation data can also be
utilized in two different ways. In static or batch adaptation, all
data is collected before the models are converted to be speaker-
dependent. If the models are continuously updated whenever
new data becomes available, the adaptation process is called
incremental or dynamic.

Speaker adaptation can be done either for the front-end or for
the back-end of the recognizer (or even for both). Front-end
speaker adaptation schemes usually attempt to perform feature
space normalization by estimating the vocal tract length and
computing the spectral shift [8]. Due to difficulties associated
with finding proper mappings, front-end adaptation has been
found ineffective. Much better results have been obtained in
the back-end domain [2] where the HMM parameters are tuned
to better characterize the new speaker. Due to the success of

adapting model parameters, we have chosen the back-end ad-
aptation approaches for this paper.

3.1 Maximum Likelihood Adaptation Approach

As in the speaker-independent case, the target of ML based
speaker adaptation is to modify the model parameters so that
the likelihood of the adaptation utterances is maximized. Two
widely known ML based adaptation methods were chosen to
be studied in this paper, namely, the Bayesian adaptation ap-
proach [2] (Maximum a Posteriori, MAP), and the Maximum
Likelihood Linear Regression (MLLR) technique [5].

Since reliable variance estimation from a limited amount of
data is difficult, only Gaussian mean vectors are updated in the
experiments presented here. Moreover, the Viterbi algorithm
was used throughout this paper to provide the frame-state
alignments.

3.1.1 Bayesian Mean Adaptation

In Bayesian adaptation, the new estimate for the k’th mean
vector m jk  in state j can be expressed in the form:
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where τ  can be regarded as the step-size controlling the
learning rate, and d jkt  denotes the probability of being in state

j and observing the k’th mixture at time t, respectively.

3.1.2 MLLR Mean Adaptation

In MLLR adaptation, an affine transformation is applied to all
Gaussian mean vectors as follows:

$m A m bjk jk= ⋅ + .                               (7)

The actual adaptation task in MLLR is to estimate the trans-
formation parameters which maximize the likelihood of the
adaptation data. To guarantee robust parameter estimation, a
high degree of transformation parameter tying is usually pre-
ferred. Due to the limited adaptation data, we use in this paper
a global transformation matrix and an offset vector that are
shared by all the mixture densities.

3.2 Discriminative Adaptation Approach

Speaker adaptation can also be done so that the target is better
linked to the maximization of the recognition accuracy, like in
[6]. Again, as in the speaker-independent case, the ML based
speaker adaptation approaches maximize the recognition accu-
racy only indirectly. Thus, the so called discriminative ap-
proaches presented earlier for speaker-independent case can
also be applied for adaptation. However, there are some sig-
nificant aspects to be considered. Especially the optimization
control parameters must be readjusted for the adaptation pur-
pose. One important change required by the reduced amount of
adaptation data is that the correct models should have a higher
learning rate than the competing (incorrect) ones.



4. RECOGNITION EXPERIMENTS
In the experiments, our target was to find out the combination
of a speaker-independent training scheme and a speaker adap-
tation scheme that maximizes the overall recognition accuracy.
First we compared two speaker-independent HMM sets esti-
mated according to the ML and the MCE criteria. Then we
applied four different discriminative and ML based speaker
adaptation schemes for both of these HMM sets and studied
the achieved recognition accuracies.

4.1 Databases

We used an English language connected digit database for
training the initial whole-word speaker-independent HMMs.
The training utterances were spoken in a car environment un-
der the following noise conditions: parking place (motor off),
city (moving car), and highway (moving car, 120 km/h). The
database consisted of 57 male and 57 female speakers, about
45,000 spoken digits altogether.

Another database consisting of 5 speakers was used for the
adaptation tests. There were about 1,800 test digits for each
speaker distributed in 400 strings of 3 or 6 digits each. This
data was recorded in a clean environment. To test the perform-
ance in the presence of noise, we added car noise to the origi-
nal clean waveforms at 0 dB and -10 dB SNRs. For adaptation
purposes we had a separate set of clean digit sequences.

In all the experiments, we used feature vectors consisting of 12
FFT-based MFCCs, log-energy and their first and second order
time derivatives. The sampling rate was 8 kHz for both data-
bases.

4.2 Speaker-Independent Experiment

State duration constrained [4], speaker-independent, multi-
environment HMMs were estimated from the initial training
data according to the ML and MCE principles. Two sets of
models were estimated, with one and three mixtures per state.

Table 1 shows the error rates for the initial ML and MCE
HMMs when using single mixture and three mixture Gaussian
densities. The results indicate the importance of having several
mixtures characterizing each state. In particular, in the pres-
ence of noise, additional mixtures are needed. Moreover, the
MCE sets of HMMs were always superior to the corresponding
ML HMMs. In the single mixture case an overall 29% error
rate reduction (e.r.r.) was achieved and in the three mixture
case an overall 30% error rate reduction was achieved due to
the MCE approach.

Clean SNR = 0 dB SNR = -10 dB
string e.r.r. string e.r.r. string e.r.r.

ML1 11.27 - 11.37 - 16.78 -
MCE1 6.21 44.90 8.42 25.95 14.23 15.20
ML3 4.71 - 6.66 - 11.62 -
MCE3 3.66 22.29 3.81 42.79 8.62 25,82

Table 1: String error rates with initial speaker-
independent ML and MCE HMMs using one and three
Gaussian mixtures in each HMM state.

4.3 Speaker Adaptation Experiments

For speaker adaptation experiments, we selected the supervised
static approach. All adaptation utterances were from a clean
environment. Each adaptation utterance consisted of six digits

spoken in a connected manner. The number of adaptation ut-
terances varied from 2 to 25.

4.3.1 Adaptation Schemes Comparison

Figs. 1-3 illustrate the recognition rates obtained with various
adaptation schemes in different noise conditions. As an initial
speaker-independent model set we selected the three mixture
MCE HMM set due to its best speaker-independent perform-
ance.

All the adaptation approaches (Bayes, MLLR, MCE, and
MMI) were capable of decreasing the error rates. The Bayesian
and MCE methods seemed to work best, but no dramatic per-
formance differences between these methods could be ob-
served. However, regarding the computational requirements of
MCE, we could conclude that the Bayesian method was the
best choice for speaker adaptation. With only 5 adaptation
utterances Bayesian adaptation decreased the error rates by
62%. In clean environment the error rate reduction was as high
as 82%.

Although having a good performance in clean, MLLR was not
a good choice for noisy environments. Among the discrimina-
tive methods, MCE was superior to MMI.
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Figs. 1-3: Recognition accuracy as a function of adapta-
tion utterances for discriminative and ML adaptation ap-
proaches in different noise conditions.



4.3.2 Simple vs. Accurate HMMs

The objective of this experiment was to find out whether com-
parable recognition rates can be obtained with single mixture
HMMs and with three mixture HMMs after speaker adapta-
tion. Single mixture HMMs are particularly preferred in practi-
cal ASR systems where the memory consumption is a critical
aspect. Based on the results in 4.2 and 4.3.1, the MCE speaker-
independent initial model set and the Bayesian adaptation
scheme were selected to be used in this experiment.

Fig. 4 shows that multi mixture HMMs clearly outperform
single mixture HMMs in all noise conditions. With the initial
speaker-independent models the usage of three mixtures gave
45% error rate reduction over the single mixture case. After 5-
utterance Bayesian adaptation the advantage reduced, but the
usage of three mixtures still gave over 35% error rate reduction
over the single mixture case. The results indicate the impor-
tance of having more accurate models even in the case of
speaker adaptation, though the performance penalty because of
single mixture HMMs is not very severe in the absolute scale.
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Fig. 4: Recognition performance comparison between
single- and multi mixture HMMs.

4.3.3 MCE vs. ML Speaker-Independent HMMs

In this experiment we wanted to find out what kind of effect
the selection of initial speaker-independent models have on the
results after speaker adaptation. We selected Bayesian adapta-
tion and applied that to the MCE and the ML initial model
sets. Because of different objectives there was a mismatch
when applying Bayesian adaptation for the MCE initial
HMMs. Thus, it was not guaranteed that this combination of
different techniques would provide the best results after the
adaptation despite of the superiority of the initial MCE model
set.

Figure 5 depicts the recognition performance for the ML and
MCE trained speaker-independent three mixture HMMs when
using the Bayesian adaptation approach. It can be noted that
the MCE model set always provided higher recognition rates
than the corresponding ML models.

In the case of the initial speaker-independent HMMs, the MCE
model set provided 30% error rate reduction over the ML
model set. After 5-utterance Bayesian speaker adaptation the
advantage reduced, but the MCE model set still gave over 16%
error rate reduction over the ML model set. The results indi-
cate that it is possible to combine discriminative and ML tech-
niques in noise robust speech recognition in an advantageous
way.
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Fig. 5: Effect of the initial speaker-independent model set
selection on the speaker adaptation.

5. CONCLUSIONS

In this paper, we showed that discriminative and Maximum
Likelihood (ML) techniques can be successfully combined in
noise robust speech recognition. In the speaker-independent
case, the discriminative training approach performed signifi-
cantly better than the ML approach, resulting in 30% error rate
reduction. We also showed that a rapid and effective speaker
adaptation is achievable, resulting in a further 62% error rate
reduction. Moreover, we showed that significant error rate
reductions in noisy conditions were achieved by performing
adaptation only with clean data. For speaker adaptation, the
performance of discriminative and ML approaches were shown
to be comparable. However, the Bayesian approach was con-
sidered as the most suitable from the implementation point of
view.
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