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ABSTRACT

The Adichie rank test and signed rank test are adapted for
signal detection. We establish a relationship with the cor-
relation between a function of the signal to be detected and
the ranks of the observed data. A comparison between the
power of these tests and the constant false alarm rate mat-
ched �lter (CFAR MF) shows that the rank tests perform
better when longer observations are available and for the
symmetric alpha stable distributions encountered in appli-
cations with impulsive interference.

1. INTRODUCTION

In this paper, we consider the problem of choosing the best
signal detector in applications where distributions are non-
Gaussian. In particular for certain applications involving,
for example impulsive interference, we investigate the use
of two rank tests formulated by Adichie [1], show their re-
lationship and compare their performance to the constant
false alarm rate matched �lter (CFAR MF) [5]. A descrip-
tion of these techniques is given in the following sections.

Rank tests have been used when the distribution of the
interference is unknown or di�cult to identify because they
make very weak assumptions [3]. For this reason, their per-
formance for a wide range of non-Gaussian distributions is
of signi�cant interest and needs to be evaluated.

We include in this study a number of symmetric � stable
distributions. These distributions have been used to char-
acterise impulsive interference, such as those in underwater
acoustic signals, low-frequency atmospheric noise and some
man-made noise [4]. Except for the Gaussian distribution,
which is a limiting case of � stable distributions, they have
in�nite variance.

1.1. Observation Model

The observation model to be considered may be expressed
as

Xn = �sn +Wn; n = 0;�1; : : : ; (1)

where � is the signal strength parameter, sn is the known,
deterministic signal to be detected, and Wn is a station-
ary random independent and identically distributed (iid)
interference process with an unknown, but continuous, dis-
tribution and unknown power. When considering a �nite

number of measurements, x = [x1; : : : ; xN ] this model can
be re-expressed with N -vector variates,

x = �s+w:

When determining the presence of the known signal, s, in
the observed signal, x, we test the hypotheses

H : � = 0

against

K : � > 0 :

As � is a measure of the signal strength, it is unnecessary
to test for � < 0.

1.2. CFAR matched �lter

A classical solution to detection in the model in equation (1)
is provided by the constant false alarm rate matched �lter
(CFAR MF) [5], expressed as

TN (X) =
sPsX

T =
p
ssTp

X(I�Ps)XT =(N � 1)

where Ps = sT s=ssT and I is the identity matrix. This
statistic has a tN�1 distribution under H. It can be used to
construct a uniformly most powerful (UMP) invariant test
for testing H against K in equation (1) when the interfer-
ence, Wn, is Gaussian distributed with unknown variance.
Consequently, we can expect that when non-Gaussian dis-
tributions are encountered, more powerful tests will exist.

2. RANK BASED TESTS

2.1. Adichie rank test

Rank based tests have been studied over a long period of
time and have shown to be powerful alternatives to classi-
cal techniques in circumstances where little is known of the
distribution of interference [2, 6, 8]. Adichie [1] proposed a
number of techniques applicable when considering hypothe-
ses that test parameters of a linear model. In this paper,
we adapt Adichie's test to the signal detection problem.



For the case when we are considering a single signal, s,
and iid interference, let us de�ne

z = [z1; : : : ; zN ] = [s1 � �s; : : : ; sN � �s]

r = [r1; : : : ; rN ]; where ri is rank of xi

v =

nX
i=1

zi  (ri)

A2( ) =

Z
 2(u)du�

�Z
 (u)du

�2

M = v2=
��
z z

T
�
A2( )

�
:

Where z is signal to be detected, standardised by its mean,
r is the ranks of the observed signal,  (�) is a function of the
ranks, usually the Wilcoxon scores or Normal scores andM
is the test statistic.

Although the procedure is tedious, the exact distribu-
tion forM can be calculated for a given z and N . However,
under certain regularity conditions (see [1] for details) it has
been shown that, as N increases, asymptoticallyM has a �21
distribution. In this paper we shall use this approximation.

If we use the Wilcoxon scores function for  , that is
 (i) = i=(n+1), then A2( ) = 1

12
. It can also be seen that

z z
T =

NX
i=1

z2i =

NX
i=1

(si � �s)2;

and as s is known, so is z zT . Therefore

M /
 

NX
i=1

zi ri

!2

=
�
z r

T
�2
: (2)

This is the square of the correlation between a function of
the signal, z, and the ranks of the data, r. This highlights
similarities between this rank based method and other tests
based on a correlation function, such as the CFAR MF. In
rank based methods, the observed data is ranked, since its
distribution is unknown or unspeci�ed. The signal to be
detected is not ranked, as it is known and deterministic.

Under H, s is not present in x, hence si and xi are un-
correlated, as are zi and ri. Thus E[zi ri] = E[zi]E[ri] = 0,

since E[zi] = 0. As N increases,
�P

N

i=1
zi ri

�
asymptot-

ically approaches a Gaussian random variable with zero
mean, through the Central Limit Theorem, and hence, M
approaches a central �21 variable (the inclusion of the con-
stant terms in the full equation ensures M is appropriately
scaled to be a �21 random variable).

However, under K, si and xi are correlated, and gen-
erally, E[zi ri] 6= 0. Thus M approaches a non-central �21
variable.

In equation (2) we have seen the mathematical moti-
vation for using this rank test and its similarity, at a ba-
sic level, to other correlation based detectors. Using the
asymptotic distribution ofM we can design a detector based
on this test.

2.2. Adichie signed rank test

Adichie also proposed a signed rank test for the case when
the density distribution of x is symmetric. Let

r
+ = [r+1 ; : : : ; r

+

N
];where r+i is the rank of jxij

sgn(x) =

�
+1; x > 0
�1; x < 0

v+ =

NX
i=1

si �(r
+

i ) sgn(xi)

M+ = (v+)2=
��
s s

T
�
A2(��)

�
:

Where r+ is the ranks of the magnitude of the observed
signal, and �(�) is a function similar to the scoring function
 (�).

Again, we note that the statistic M+ is proportional
to the square of the correlation between the signal, s, and
a function of the ranks of the observations, in this case,
�(r+

i
) sgn(xi). Under similar conditions mentioned in sec-

tion 2.1, the asymptotic distribution of M+ is �21.

3. RESULTS AND DISCUSSION

In order to provide guidelines for the use of the proposed
method, we have performed computer simulations to esti-
mate the power of the tests being considered; using a num-
ber of di�erent distributions. The signal used in all cases
was a sinusoid. All results were generated by running 1000
simulations for each test at a signi�cance level of � = 5%.

In order to determine the power of the tests based on
the CFAR MF, Adichie rank test (Adi. I) and signed rank
test (Adi. II) under a range of scenarios, four di�erent
operating conditions have been simulated and are shown in
Tables 1 { 6. Note that for the two shorter sequence lengths
of N = 10 and N = 50, results for a detection scheme based
on the bootstrap [7] have also been included.

� N = 10 observations, signal to noise ratio (SNR)=0dB

� N = 50 observations, SNR=-9dB

� N = 100 observations, SNR=-11dB.

The SNRs have been chosen so the tests considered
achieve power of around 80% to 95%. It would be unre-
alistic to compare estimated power levels that are all near
100%. Similarly, no information is obtained by comparing
tests at power levels where all tests perform poorly.

The most signi�cant observation to be made from in-
specting the tabulated data is that the rank tests appear to
perform better than the CFAR MF for the symmetric � sta-
ble (S�S) distributions tested { i.e. Cauchy, S�S(� = 1:5),
S�S(� = 0:75) and S�S(� = 0:25). The only exception
is the Gaussian distribution which is a limiting case of �
stable distributions. Rank tests, by their nature, are unaf-
fected by scaling, and this may have increased their power,
compared to other methods, for the heavy-tailed � stable
distributions.

The CFAR MF outperforms the rank tests for short se-
quence lengths, even for non-Gaussian distributions. As
stated in section 2.1, Adichie's test statistic asymptotically
has a �21 distribution. This approximation becomes more
accurate for longer sequence lengths and therefore the power
of the rank tests increases, relative to the CFAR MF.

This problem may be reduced by calculating the exact
distribution of the statistic { as mentioned previously. It
may also explain the fact that the signi�cance level appears



to be underestimated for the shorter sequences. Addition-
ally, it is often the case with rank tests that longer sequences
assist them overcoming problems caused by the \discrete-
ness" of ranks.

Generally speaking, when few observations are avail-
able, techniques such as the bootstrap have been shown [7]
to have comparable or superior performance to the CFAR
MF. For longer sequences, such as N = 100 the computa-
tional burden of the bootstrap makes it impractical.

The signi�cance level of all tests was maintained, ex-
cept for Adichie's signed rank test for longer sequences in
the case of a number of distributions, primarily the sum of
Gaussian and � stable distributions.

The e�ect of varying the sequence length, while main-
taining the SNR at -9dB, when using Gaussian interference,
is shown in Figure 1. It should be evident that the di�er-
ence in the number of samples required to achieve a certain
detection power, as a proportion of the total number of
samples, decreases for larger N .
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Figure 1: Detection rates of tests at SNR= �9dB and Gaus-
sian interference

Figure 2 shows the degradation in performance of the
rank tests and the CFAR MF as the SNR is reduced, while
maintaining a constant number of data points of N = 50
(the false alarm rate was maintained by all tests). The
interference was Gaussian distributed.

These results show that the rank based methods' results
at around 2dB higher SNR are comparable to the CFAR
MF's, remembering that the CFAR MF is the optimal de-
tector for additive Gaussian interference of unknown power.

4. CONCLUSIONS

Adichie's rank tests can be viewed as a correlator detector
utilising rank information when exact distributional proper-
ties of the observed signal are unavailable. It more powerful
than the classical CFAR MF against the symmetric � stable
distributions tested and against a number of non-Gaussian
distributions when long observations are available. This ap-
pears to be a signi�cant result. As the number of observa-
tions is decreased, the rank tests' performance deteriorates
so that the CFAR MF detector becomes more powerful.
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Figure 2: Detection rates of tests for N = 50 and a Gaussian
distribution.
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Dist1. CFAR MF Adi. I Adi. II Boot.
N(0; 1) 4.1 4 2.8 4.5
U(0; 1) 5.7 3.9 4.3 5.6
Laplace 4.1 3.3 3.3 4.3

Log Normal 3.9 3 2.4 4.3
t2 4.5 2.6 2.1 3.8
t3 5 4.6 4 5.8
t8 5.1 3 2.5 5P
I

G
3.2 4.1 4.1 3.6P

II

G
5.8 3.1 4.3 4.3

Cauchy 4.5 3.9 4 4.7
S�S(� = 1:5) 6 5 3 5
S�S(� = 0:25) 0 4 0 2
S�S(� = 0:75) 5.4 3.4 2.5 4.1

Table 1: False alarm rates (in %) for N = 10, SNR=0dB.

Dist. CFAR MF Adi. I Adi. II Boot.
N(0; 1) 87.9 61.1 55.5 84.3
U(0; 1) 91 51.1 52.6 86.9
Laplace 86.2 66.3 60.8 84.6

Log Normal 92.6 86.4 88 91.9
t2 93.1 91 87.3 92.8
t3 87.8 75.4 68.7 86.8
t8 84.8 60.8 56.7 82.6P
I

G
88.5 70.8 73.7 86.4P

II

G
88.2 64.8 58.8 81.6

Cauchy 99.8 99.8 99.7 99.5
S�S(� = 1:5) 95 94 91 95
S�S(� = 0:25) 95 100 100 100
S�S(� = 0:75) 99.4 99.8 99.4 99.6

Table 2: Detection rates (in %) for N = 10, SNR=0dB.

Dist. CFAR MF Adi. I Adi. II Boot.
N(0; 1) 4.8 4.8 4.9 5
U(0; 1) 5.3 6 4.7 4.9
Laplace 5.4 5.2 5.7 5.5

Log Normal 3.3 5.4 8.9 4.4
t2 5.6 6 5.8 6.3
t3 4.5 5.1 4.9 4
t8 5 3.3 4.7 4.9P
I

G
4.5 5.9 7.1 4.4P

II

G
4.3 5.9 6.2 3.5

Cauchy 4 4.8 13.7 3.7
S�S(� = 1:5) 4 5.1 6 5
S�S(� = 0:25) 2.5 4 41.8 2.2
S�S(� = 0:75) 3.2 4.7 25.5 4.1

Table 3: False alarm rates (in %) for N = 50, SNR= �9dB.

1 The abreviations used for the distributions tested were:

N(0; 1) { Gaussian, U(0; 1) { Uniform, S�S { symmetric � stable

Dist. CFAR MF Adi. I Adi. II Boot.
N(0; 1) 80.6 60.2 57.9 77.6
U(0; 1) 80.7 55.7 41.3 77.9
Laplace 79.8 76.5 81.9 78.3

Log Normal 86.2 98.7 78.5 87.3
t2 93 99.9 99.9 92.3
t3 80.5 83.1 85.7 78.2
t8 81.7 69.2 68.2 80.1P
I

G
81.6 87.8 73.5 80.2P

II

G
78.6 76.7 78.3 75.1

Cauchy 96.5 100 99.5 95.7
S�S(� = 1:5) 93.7 100 98.8 92.6
S�S(� = 0:25) 96.9 100 98.7 96.5
S�S(� = 0:75) 97.3 100 98.8 95.6

Table 4: Detection rates (in %) for N = 50, SNR= �9dB.

Dist. CFAR MF Adi. I Adi. II
N(0; 1) 5.3 5.1 4.3
U(0; 1) 4.6 4.4 3.9
Laplace 4.6 4.8 4.3

Log Normal 3.9 5.4 15.1
t2 5 4.4 6.4
t3 4.3 5.7 5.2
t8 3.9 4 3.5P
I

G
4.1 4.5 10.3P

II

G
5.7 4.8 7

Cauchy 4.4 4.4 33.9
S�S(� = 1:5) 3.1 4.3 9.5
S�S(� = 0:25) 3.3 4.4 98.1
S�S(� = 0:75) 4.1 4.7 59.4

Table 5: False alarm rates (in %) for N = 100, SNR=-11dB.

Dist. CFAR MF Adi. I Adi. II
N(0; 1) 89.6 74 70.4
U(0; 1) 88.7 70.6 55.2
Laplace 88.2 87 91.4

Log Normal 89.8 99.8 78.8
t2 95.4 100 99.7
t3 90 93.5 95.3
t8 89.7 79.1 77.9P
I

G
88.9 96.5 77.3P

II

G
87.7 88.3 92.3

Cauchy 98.4 100 99.4
S�S(� = 1:5) 94 100 98.7
S�S(� = 0:25) 98.1 100 98.8
S�S(� = 0:75) 95.9 100 98.8

Table 6: Detection rates (in %) for N = 100, SNR= �11dB.
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