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ABSTRACT

We present a new algorithm for time-scale expansion of au-
dio signals that comprises: time interpolation, frequency-
scale expansion and modi�cation of a spectral represen-
tation of the signal. The algorithm relies on an accurate
model of signal analysis and synthesis, and was constrained
to a non-iterative modi�cation of the magnitudes and the
wrapped phases of the relevant sinusoidal components of
the signal. The structure of the algorithm is described
and its performance is illustrated. A few examples of time-
expanded wideband speech can be found on the Internet.

1. INTRODUCTION

Time-scale modi�cation of audio signals is a desired func-
tionality in many applications including for example, non-
linear audio editing. Ideally, only the presentation rate of
the audio material should be modi�ed without a�ecting its
intelligibility or its quality. Time domain techniques as well
as frequency domain techniques have been used to modify
the time-scale of audio signals.

Time-domain techniques generate a new signal by con-
catenating time frames taken from the original sound ei-
ther in an overlapped fashion (corresponding to time-scale
expansion) or in a discontinuous fashion (corresponding to
time-scale compression). The concatenation is performed
so as to avoid audible artifacts associated to amplitude or
phase discontinuities. To prevent these, some small overlap
between adjacent frames is usually enforced in which fading
and alignment techniques are used. Therefore, under this
class of algorithms, methods for time-scale modi�cation dif-
fer mainly on the fading criterion, or on the correlation or
similarity metrics underlying the alignment criterion.

Frequency domain techniques involve the modi�cation
of a spectral representation of the audio signal, which is
combined with decimation and/or interpolation operations
in order to synthesize the rate modi�ed audio signal. A
classic reference is the work developed by Portno� [1] which
comprises phase unwrapping, a model of speech production,
and a signal analysis and synthesis scheme based on the
Short Time Fourier Transform (STFT). The coe�cients of
the STFT are related to the parameters of the speech model

This work was supported by the Portuguese Research Pro-
gram PRAXIS XXI under research contract 2/2.1/TIT/1644/95.
The author is also a�liated with INESC, Largo Mompilher 22,
4000 PORTO PORTUGAL.

such that their manipulation leads to the synthesis of rate-
changed speech. A large number of other examples could
be given such as a technique based on the phase vocoder
[2], or a technique developped by Quatieri et al. [3], which
is based on a 21 band perfect reconstruction �lter bank.

Our technique assumes that the audio signal can be rep-
resented as a sum of quasi-stationary sinusoids. It relies on
an accurate spectral manipulation, which accounts for the
speci�c nature of the �lter bank and the shape of the analy-
sis/synthesis time windows, but does not assume a speci�c
source production model. The technique consist in a new
approach in the sense that it achieves time-scale expansion
through a spectral expansion, in the original time-scale, of
the spectrum modi�ed in amplitude and phase. An in-
dependent time-interpolation operation then leads to the
time expanded signal which preserves the original pitch and
timbre. Other innovative aspects are that the technique ac-
counts explicitly for temporal modulation e�ects, and uses a
new method to estimate the phase and the center frequency
of a sinusoidal component beyond the frequency resolution
of the analysis/synthesis �lter bank [4].

The algorithm was constrained to meet two severe re-
quirements:

1. the algorithm should be integrated within a percep-
tual audio coder (ASC [5]) and therefore should share
its analysis/synthesis �lter bank,

2. the algorithm should perform all relevant spectral
manipulations non-iteratively, on a single frame ba-
sis, and without the possibility to look into the past,
nor into the future of the signal.

An obvious consequence of these requirement is that they
preclude phase unwrapping, which means in practice that
only time-scale expansion by integer factors is allowed [4].

The paper is organized as follows. In section 2 we
present the main principles underlying our approach. We
explain in section 3 the relevant properties of the analy-
sis/synthesis �lter bank allowing convenient spectral mod-
i�cations. The main structure of the frequency-scaling and
spectral modi�cation algorithm is described in section 4,
and its performance is illustrated, with a few examples, in
section 5.

2. THE CENTRAL IDEA

The algorithm achieves time-scale expansion through a three
step operation as illustrated in Figure 1.
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Figure 1: A frequency domain approach to time-scale ex-
pansion: (A) original signal, (B) spectral modi�cation, (C)
same as B with sampling frequency 2

K
FN instead of 2FN ,

(D) same as C after interpolation by K.

The signal represented in iA is assumed to have its sig-
ni�cant spectral content limited to fM below the Nyquist
frequency FN . The �rst step consists in a spectral modi�ca-
tion (in amplitude and phase) followed by expansion along
the frequency axis (not along the time axis as in [1] and
[3]) by the desired time expansion factor, K, as illustrated

in step iB . This spectral expansion is a delicate operation
because the frequency and phase relationships among the
most relevant signal components must be preserved in order
to keep the �ne temporal structure of the signal.

If, as represented in iC , the sampling frequency of the
signal is changed to 2

K
FN (resampling), the pitch of the

original signal is maintained and the time-scale is expanded
by K. In order to recover the original sampling frequency,

the signal must be interpolated by K, as represented in iD .
As results clear from Figure 1, the interpolation should

be performed before the frequency manipulation in order
to avoid reducing the signal bandwidth by the time-scale
expansion factor.

3. PROPERTIES OF THE ODD-DFT BASED
ANALYSIS/SYNTHESIS SYSTEM

The spectral expansion process uses properties of the anal-
ysis/synthesis scheme of ASC. This scheme can be reduced
to a 50% overlap signal analysis according to a time win-
dow h(n) of length N and a N point Odd-DFT [6] direct
transformation (1), a N point Odd-DFT inverse transfor-
mation (2), and a 50% overlap-and-add synthesis (3) using
the same time window h(n). The block index m identi�es
the position of successive transformations.
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The window h(n) should provide perfect reconstruction in
the absence of spectral modi�cation [7], i.e. ~x(n) = x(n�d),
where d is the system delay. It shoud also provide good
spectral selectivity and good attenuation of time aliasing
e�ects due to spectral sub-sampling and �ltering. A simple
and yet satisfactory solution given the above requirements
can be derived from the Hanning window [4]:

h(n) = sin
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N
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2
) ; 0 � n � N � 1 : (4)

This window is adequate to implement the spectral analysis
and modi�cation processes since, in addition, it is analyti-
cally tractable. For example, the main lobe of its frequency
response can be approximated by:
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where G is a gain parameter and, except for a constant addi-
tive term, the normalized magnitude in dB of the envelope
of the frequency response, for j!j > 3�

N
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When (4) is combined with the Odd-DFT �lter bank, a
number of interesting results are obtained:

� any DC component of the input signal, is compacted
on the �rst spectral line (i.e. at k = 0) [7],

� if x(n) is a pure tonal signal whose frequency is 2�
N
(`+

�`), where ` is an integer number in the range 1 �
` � N

2 � 1 and �` is a real number in the range
0:0 � �` < 1:0, then the frequency line at k = ` of
the Odd-DFT corresponds to the strongest spectral
line, and any existing �xed phase � of the tonal signal
can be recovered from the phase at k = ` � 1 after
adding �

2N and an o�set approximated by �`� [4];
moreover, when �` = 0, the di�erence between the
phase at k = ` and the phase at k = `� 1 is exactly
�( 1

N
� 1), regardless of �,

� in the case of time modulated tones, the temporal en-
velope is approximately maintained even if the tones
are displaced in frequency, by keeping the relative
phase relationships among the neighboring spectral
coe�cients, and provided that the temporal modula-
tion is relatively smooth when compared to the du-
ration of the analysis/synthesis window.

A detailed illustration of these properties is provided in [4].

The spectral expansion implied in step iB of Figure 1 is
accompanied by a modi�cation of both the frequency and
the �xed initial phase of each relevant tonal component of
the quasi-stationary input signal, according to the time ex-
pansion factor. Given that the discrete transform gives ac-
cess only to a �nite number of sampled frequencies, it is nec-
essary to rely on an accurate estimation of both the integer



frequency, 2�
N
`, and the fractional frequency 2�

N
�` of each

relevant tonal component. Although several methods of
frequency estimation could be used such as the \quadratic
�t" or the \phase vocoder" [8], we developed an alternative
method that is matched to the peculiar combination of the
chosen analysis/synthesis window with the Odd-DFT [4].

4. SPECTRAL EXPANSION OF NARROW
AND WIDEBAND SIGNAL COMPONENTS

Both narrowband and wideband components of an audio
signal keep their bandwidth when subjected to magnitude
and phase changes during the frequency expansion process,
in order to preserve the original pitch and the �ne tempo-
ral structure. The major algorithmic steps are summarized
below (the block index m is omitted for clarity).

1. Following the time-frequency transformation, all spec-
tral peaks are found using a peak detector similar
to the one used in the Psychoacoustic Model 1 of
the MPEG-Audio Standard. These peaks are further
decimated in order to avoid low level variations and
in order to retain the most relevant signal compo-
nents in a psychoacoustic sense [9]. The location of
each relevant spectral peak (local maximum) as well
as the location of the center of each spectral valley
(local minimum) are stored.

2. The center frequency of each local maximum is ob-
tained by estimating accurately the ` and �` of all
relevant signal components.

3. As the time expansion factor, K, is speci�ed and the
original frequency position `a +�`a of each relevant
signal component is known, the new frequency posi-
tion `b +�`b is easily obtained.

4. The bandwidth of each spectral component is found
using (7) if �` > 0:5 or (8), otherwise.
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5. The Power Spectral Density at the center frequency
(`a+�`a) of each signal component is estimated using
its bandwidth, at the closest discrete frequency:

PMAX = X(`a)dB�30 log
h
cos

�

W
(2�`a � 1)

i
: (9)

6. The �xed phase, �, for each signal component is esti-
mated by removing the constant phase contributions:

�a = �(`a � 1) + �(
2

N
��`a) : (10)

This estimation assumes that any time modulation
is su�ciently smooth so that, as a consequence, the
phase at k = `a � 1 is not modi�ed substantially.

7. New magnitudes are synthesized at kL = `b�1, k0 =
`b and at kR = `b + 1 as given respectively by:
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h
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�
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The new magnitudes from kRb = `b + 2 to the next
local minimum on the right, and from kLb = `b�2 to
the next local minimum on the left, are synthesized
by keeping the original di�erential magnitudes in dB:

X̂(kRb) = X(kRa) + X̂(`b + 1)�X(`a + 1) ;

X̂(kLb) = X(kLa) + X̂(`b � 1)�X(`a � 1) :

The magnitude of each local minimum is further mod-
i�ed using (6) and the spectral distance to one of the
surrounding maxima, whichever produces a predom-
inant e�ect.

8. The phase of each component expanded in frequency
is synthesized by reconstructing �rst the phase at k =
`b � 1 as follows:

�̂(`b � 1) = K�a� �(
2

N
��`b) : (14)

The phases from kb = `b to the next local minimum
on the right and from kb = `b � 2 to the next local
minimum on the left, are synthesized by maintaining
the original di�erential phases:

�̂(kb) = �(ka) + �̂(`b � 1)� �(`a � 1) :

9. The above spectral expansion and modi�cation pro-
cess generates spectral holes which are avoided by
interpolating the magnitudes and phases of all co-
e�cients of the spectral hole. The interpolation of
phases was preferred to a simple randomization in
order to avoid critical phase transitions such as ��.

5. A FEW RESULTS

We can make an objective assessment of the quality of the
whole spectral modi�cation by comparing the output of the

algorithm at step iB , with the ideal output signal, since
the �nal stages of resampling and time interpolation do not
a�ect the quality of the signal. The ideal output signal
can be easily generated by synthesizing the desired spectral
modi�cation subjected to the time envelope of the original
signal.

Figure 2 illustrates the response of the algorithm (bot-
tom) to a stationary and harmonic input signal (top) when
the scale expansion factor is 2, the sampling frequency is
48 KHz, and N = 1024. The signal in the middle of Figure
2 is the signal ideally expanded in frequency by 2. The input
signal comprises four tones, harmonically related, whose
fundamental frequency corresponds to (`+�`) = 12:3. In
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Figure 2: Frequency expansion of a four tone harmonic sig-
nal by a factor of two. Top: original signal. Middle: syn-
thesized signal. Bottom: processed signal.

all cases, the spectrogram corresponds to a 1024-point time-
frequency Odd-DFT transformation based on the sine win-
dow (4). For clarity only one fourth of the time segment is
displayed. The �xed initial phases of all four tones of the
input signal are zero.

It can be concluded that as the spectral separation be-
tween the tones of the expanded version is larger than in
the case of the input signal, the spectral valleys reach lower
PSD values. Secondly, as the �` of the second and fourth
harmonics of the input signal are equal to the �` of the
�rst and second harmonics of the ideally expanded version,
respectively, their phases are also equal as results from (14).
For the same reason, the magnitude shape of these spectral
peaks is also similar as suggested by (11), (12) and (13).

It can also be seen that the �ne temporal structure of
the original signal is maintained. This example assumes
signal stationarity and absence of temporal modulation.

Other more realistic examples were also tried. Table 1
presents the Signal-to-Noise Ratios (SNR) expressing the
error in the time domain between the ideal output signal
and the actual output signal for four di�erent test signals.
The �rst signal corresponds to the signal illustrated in Fig-
ure 2. The second signal consists in the fundamental of the
previous signal modulated linearly at rise and fall during
50ms. The third signal corresponds to a similar modulation
that lasts only (rise and fall) 5ms (tonal pulse). The fourth
sinal is a sine sweep whose frequency increases from 100 Hz
to 1 KHz in 40 ms. In all cases the duration of the signal
corresponds to four overlap-and-add analysis/synthesis op-
erations. The SNR �gures in Table 1 should be interpreted
qualitatively rather than quantitatively since the ideal and
output signals sound indistinguishable except for the sine
sweep.

Not surprisingly, the best score is obtained by the har-
monic complex tone because it is a stationary signal and

Table 1: Qualitative evaluation of the time-scaling algo-
rithm for four increasingly di�cult signals.

item harmonic mod. tone pulse sweep

SNR (dB) 28.4 15.4 14.6 1.6

this condition minimizes the errors introduced by the algo-
rithm. In all other cases, the deviations from stationarity
get more and more aggressive, particularly because the du-
ration of the strong changes is comparable or less than the
size of the transform (N). The low SNR in the case of the
sine sweep just re
ects the fact that due to the nature of the
analysis/synthesis �lter bank, the algorithm has an inherent
di�culty in dealing with frequency modulated signals.

In the case of very wideband signals such as impulsive
noise, and sound attacks, the algorithm fragments the wide-
band character of the signals during the process of spectral
expansion, which makes transient smearing audible.

In the case of wideband speech, the time-expanded sig-
nals sound free from obvious artifacts and preserve the
speaker dependent features, even when the expansion fac-
tor is as large as 4. In fact, the naturalness of the unvoiced
regions as well as of the original pitch of the speech are ab-
solutely maintained, despite a few subtle distortions arising
when the �lter bank does not have enough frequency reso-
lution to resolve the reciprocal of the pitch period. A few
examples of time-scaled wideband speech are available on
the Internet (http://www.inescn.pt/~ajf/timescale.html).
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