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ABSTRACT

In hands-free speech recognition the speaker should be able
to move freely in front of the speech acquisition device.
However, the speech signal is then submitted to variations
due to the continuous change of position in the acoustic
space. This paper focuses on the role of speaker head rota-
tions as compared with static situations in anechoic condi-
tions. The e�ect of speaker directivity in speech recognition
performance degradation is demonstrated and a compensa-
tion method based on HMM composition is proposed to
increase the performance.

1. INTRODUCTION

So far moving speaker for speech acquisition or recogni-
tion has been relatively seldom addressed in the literature
[1][3][7]. However, some authors have already mentioned
that, for example, in the case of speech acquisition with mi-
crophone arrays, high adaptation capacity to speaker move-
ments is necessary [1].

The adaptation of a microphone array to speaker move-
ments in a large room is addressed in [3]. Three nominal
positions (right, center, left) of the operator in front of an
array of twelve microphones distributed around the screen
of a computer workstation are considered. Sudden move-
ments of the speaker from the left-side to the right-side lo-
cation are envisaged. The authors showed that permanent
tracking of impulse responses is necessary to adapt the ar-
ray to speaker movements. However, they notice that 1 s
of speech activity is necessary for convergence of the adap-
tation algorithm to the new position. This delay precludes
the use of this method for speech recognition in cases where
continuous change of the speaker position is expected.

A novel interesting method based on 3D Viterbi search
using a linear microphone array is proposed in [7]. The au-
thors includes the talker direction as supplementary param-
eter to input frames and HMM states in the Viterbi search
algorithm to determine automatically the direction of the
talker. The algorithm is tested in a small room by apply-
ing a continuous movement of a loudspeaker in front of the
microphone array in both clean and noisy conditions. The
approach of the method has the advantage that recognition
and adaptation to the new position are done on a frame by
frame basis, which suppresses the necessity of an adaptation
delay like previously mentioned one. Unfortunately the re-
sults presented for a moving source do not demonstrate the

e�ciency of this method when compared to speech acquisi-
tion with a single microphone excepted for low level signal
to noise ratio where the microphone array plays its role.

In this paper we focus on the results of quantitative
evaluation of speech recognition performance degradation
for speaker head rotations as compared with static situations
and we present a compensation method based on HMM
composition. In Section 2 we describe the conditions of the
experiments and the system used for recognition. In Section
3 we present the results obtained and discuss their relations
to speaker directivity. In Section 4 we then present the
compensation method used to improve the results. Finally
we summarize this work and present our future one.

2. EXPERIMENTS

2.1. Description

These preliminary experiments have been designed to in-
vestigate the e�ects of rotation only and we have tried to
suppress any other kind of inuences which would have been
related to another study. For this reason the experiments
were performed in anechoic conditions. It was also not ad-
equate to use a human speaker, since it would have not
been possible to separate variations due to the speech sig-
nal itself from those coming from the source movement. To
approach natural conditions anyway the speaker radiation
was implemented by using the arti�cial mouth of a dummy
head placed on a rotating chair. It was used to emit previ-
ously recorded speech signals. The rotation axis z0 of the
chair corresponded approximately to that passing through
the middle of the mouth aperture as depicted in �gure 1. In
static situations the chair was oriented at di�erent angles.
In dynamic situations four rotations on the axis z0 were
carried out by turning the chair over an angular sector of
180� centered on the main orientations labelled Front, Left,
Back and Right.

2.2. Speech coding and HMM recognizer

The speech signal was coded with a 32 dimensional vec-
tor composed of 16 LPC derived cepstra and correspond-
ing �-cepstra. The autocorrelation coe�cients (16th order)
were computed each 8 ms on successive frames of 32 ms
length of Hamming windowed and preemphasized speech
with �lter 1�0:97z�1. Forty-two context-independent phone
models trained previously by using a large population of
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Figure 1: Description of the experimental set-up.

speakers were used for phoneme recognition [4]. Every
phone model has three states, excepted the models for si-
lence between words (#) and for small pause in the vocal
production of double consonants (Q) which have both one
state. Each state is associated with a mixture of four Gaus-
sian distributions. Recognition experiments were performed
using the complete model with cepstrum and �-cepstrum co-
e�cients (cep+dcep) and a smaller one (cep) derived from
the previous one by using only the 16 cepstrum coe�cients.

2.3. Speech signals

Two kind of speech signals were used: one Japanese sen-
tence pronounced by a male speaker chosen for its best
phoneme recognition in clean conditions with cep+dcep
and �ve successive synthesized long vowels \aa ii uu ee oo"
with a small silence between each vowel. Each synthetic
vowel was obtained by �ltering a train of impulses at fre-
quency 125 Hz with an IIR �lter derived from the cepstrum
coe�cients corresponding to the maxima of the mixture
Gaussian distributions for one particular HMM state. This
state was chosen so that the �nal transcription after coding
and recognition with cep corresponded to that theoretically
expected \# aa Q ii Q uu Q ee Q oo # ". The model cep
gave almost the correct transcription \# aa Q ii Q uu Q ee
Q ou # " with one oo-ou phoneme confusion.

2.4. Evaluation

To get a more detailled insight of the e�ect of rotation on
recognition results, it was preferred to measure the phoneme
accuracy on a frame level between the reference transcrip-
tionREF of the static front direction and the transcription
TEST of the static or dynamic situation considered. The
frame level transcription is the frame by frame succession
of phone models for which the output probability of one of
their state is maximum. Accuracy (in %) was calculated as
(1 � S+D+I

N
) � 100, where S, D and I are respectively the

number of substitutions, deletions and insertions errors be-
tween TEST and REF. N is the total number of frames
considered.

The following example illustrates the deterioration of
phoneme accuracy both at sentence and frame level for the
static back orientation. The ideal Japanese phoneme tran-
scription should be \# hoNsho wa # kotoba no seijijiN-
ruigaku to iQte mo yoi # (You could say that this book is
a political anthropology of words)".

w w w w w w w w w w w w w w w w w w w aa aa a   aa aa a  a   a  a  Q Q #  #. . . 

# p o  n sh w a   # k h o t o b a n o  s  ei j j i  N  r  y a k     u  t    o  i # t e m o y uu d  #    

... # p p p p p p     u  o  o  o  o  o  o o o o  n  n N N Q Q j j j j sh sh sh sh sh sh sh sh sh sh 

TEST:

REF :

71% frame accuracyN=465

Ref :
# p w N  j  w aa # p h o t o b a m o ts ei j j n by ei y a k p  u my p         e m    y uu Q #    
       ~ ~  ~      ~     ~                  ~     ~          ~  ~  ~         +      ~   ~ ? ? ?        ?         ~ 

55% phoneme accuracy? D=4S=13 I=1 N=40

Test:

Phoneme transcription at frame level

 ... # p p p p p p w w w w w w w  a a o m N N N N N Q j j j j sh sh  j    j    j    j    j    j  sh  u   
                           + ~  ~  ~ ~  ~  ~  ~ ~   ~  ~  ~          ~                       ~   ~   ~   ~   ~   ~       ~
w w w w w w w w w w w w w w w w w w w aa aa aa aa aa aa aa         Q Q     #. . .
                                                                                   ~            ~  ~   ?  ?          ?

Phoneme transcription at sentence level

~ +

? D=9S=117 I=9~ +

( only: "# p o n sh w a #" )

Although the frame accuracy between REF and TEST is
still relatively high with 71%, the corresponding phoneme
transcription at sentence level is much more degraded with
only 55% accuracy between Ref and Test.

3. RESULTS

3.1. Static-Dynamic comparison

Figure 2 depicts the comparison between the frame accu-
racy obtained with the model cep for di�erent static head
orientations and that obtained for all four dynamic situa-
tions as function of the head direction. The radial width
of each hatched region corresponds to the domain of varia-
tions of frame accuracy obtained for 4 successive trials; for
more clarity the angular width is limited to a small sector
near the considered main orientation. The region labelled
Front fast corresponds to a fast rotation of 180� in both left
and right directions during the emission of the �ve succes-
sive synthesized vowels. The other regions labelled with the
end string slow correspond to an approximately half slower
rotation in one or the other direction.

As can be observed each hatched region is approxi-
mately centered on the angular average of the static frame
accuracy in a sector of �90� around the main orientation,
thus suggesting a close relation with the head orientation.

Figure 2: Comparison between static and dynamic frame
accuracy for the model cep.

Using the complete model cep+dcep which includes
also the �-coe�cients improves a little the frame accuracy



Figure 3: Comparison between static and dynamic frame
accuracy for the model cep+dcep.

for the front and back directions as depicted in �gure 3.
However, the e�ect is more intensive for the side orienta-
tions and the variance of the dynamic results is increased.

3.2. Relation with speaker directivity

Figure 4 shows the evolution of short-time energy and �rst
�ve LPCC coe�cients for the static front direction and
one of the dynamic situation corresponding to the label
Left slow in �gure 2. During head rotation energy and
LPCC coe�cients vary continuously, consequently the out-
put probability of each HMM model is also modi�ed for
each frame and the �nal transcription is degraded.

Figure 4: Evolution of short-time energy and LPCC co-
e�cients for the static front direction and one dynamic
Left slow situation.

Figure 5 gives an example of LPC spectrum level dif-
ferences for the synthetic vowel \aa" between the static
directions 15�; 45�; 90�; 180� and the front one. Depending
on the considered angle the e�ect of the head is charac-
terized by a variable �lter mostly of low-pass category but

Figure 5: LPCC spectrum di�erences resulting from the
head orientation.

also with pronounced resonances around 1kHz for the side
orientations.

By taking one particular frequency e.g. 4kHz and look-
ing at the LPC spectrum level di�erences between all mea-
sured static directions and the front direction, we obtain a
directivity pattern like depicted in �gure 6. This pattern
is relatively independent of the vowels considered and is
very similar to the directivity which can be measured for
a real human speaker [2]. This directivity results from the
shadowing and di�raction e�ects of the head and torso on
the mouth aperture. These frequency dependent e�ects are
increasing when going from the front to the side and back
orientations.

This illustrates the clear correlation between the results
of �gure 2 and speaker directivity and demonstrates that,
for speech coding parameters which are sensitive to such
multiplicative distortion in the spectral domain, speech recog-
nition degradation have to be expected in the case of speaker
head rotations.

Figure 6: Comparison between dummy head and human
speaker directivity at 4kHz.



4. HMM COMPOSITION

4.1. Introduction

HMM composition methods have already been used inten-
sively to cope with noise adaptation problems, reverberant
speech and multiplicative distortion resulting e.g. from the
use of a di�erent acquisition channel, like di�erent micro-
phones [5][6]. This method seems attractive since directiv-
ity can be also interpreted as a multiplicative distortion but
morevover direction dependent.

4.2. Model choice and evaluation

The method considered here is analogous to the work de-
scribed in [6] for room acoustics distorted speech. The main
idea is to compensate the directivity �lter for all directions
at once with a separate \directivity HMM".

The �rst problem is to determine the HMM structure
which can be employed for this kind of distortion. Six dif-
ferent model structures were taken into consideration: one
serial 3 states model with single Gaussian distribution, one
model with 3 states in parallel each also with single Gaus-
sian distribution and four models with one state with mix-
ture of 2, 3, 4 and 5 Gaussian distributions. The directivity
�lter is obtained by substracting the cepstrum coe�cients
of the synthesized vowels for the static front direction from
all other recorded static and dynamic situations, thus giv-
ing approximately 1'30s of signal. This signal is used for
training of the directivity HMM, which is then composed
with all 42 phoneme models. The speech material used for
testing was the same as described in section 3.

4.3. Results

The best results depicted in �gure 7 were obtained with the
model with one state and 4 Gaussian distributions. As can
be observed by comparing this �gure with �gure 3 all frame
accuracies and corresponding variances are improved very
much for the front and side orientations. The model with
5 Gaussian distributions gave almost similar results, thus
suggesting that a supplementary increase of the number
of Gaussian distributions would not improve the results.
The two models with three states were already surpassed
by the model with one state and 2 Gaussian distributions.
This indicates that an accurate modeling of the directivity
at the output probability level can compensate the head
movement.

However, although the dummy head directivity is very
similar to that of the human speaker considered in this
study, it remains to verify that this method can also be
applied to any human speaker.

5. CONCLUSION

This study has evaluated the role of speaker head rotations
on speech recognition performance. It has been shown that
the resulting degradation is the result of speaker directivity
which can be interpreted as a �lter dependent on the direc-
tion. Consequently for all speech coding methods which are
sensitive to multiplicative spectral distortions, like LPCC,
MFCC, etc., speech recognition performance degradation

Figure 7: Comparison between static and dynamic frame
accuracy for the model cep+dcep using HMM composition
with a mixture of 4 Gaussian distributions.

has to be expected. Therefore some speech coding features
or distance measure insensible to these variations have to be
found or some algorithms have to be determined to com-
pensate the e�ects of the directivity. One compensation
algorithm based on HMM composition is proposed here
which improves the results signi�cantly for the front di-
rection. However, although the method looks promising, it
still has to be tested in the case of real human speakers.
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