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ABSTRACT

Nonlinear multichannel filters have successfully been applied to
biomedical signals, multichannel images as well as processing of
vector fields. In multichannel signals, component variances and
correlations among components may be unequal and time-varying.
Such changes can be expressed as an affine transformation of the
input signal. In this paper, we investigate how the performance
and statistical properties of multichannel filters stemming from or-
der statistics (OS) change under affine transformations. An affine
equivariant multichannel filter is introduced and the use of affine
equivariant performance metric replacing the Mean Square Error
is proposed. Advantages of affine equivariance are demonstrated
in simulation, and filtering examples using real data are given.

1. INTRODUCTION

A growing number of signal processing applications use multi-
channel data. Components in multichannel signals may have dif-
ferent variances and may be correlated and statistical properties of
the signal may be time-varying. As an example, a correlated ellip-
tically symmetric noise density can be viewed as an affine trans-
formation of a spherically symmetric density. Consequently, it’s
desirable to develop filtering techniques that yield estimates that
commute with changes in variances and correlation structure.

In this paper, we study a multichannel OS-filter for noise at-
tenuation that behaves properly under affine transformations, i.e.,
is affine equivariant. Formally, an estimatorT is affine equivariant
if

T (AX + v) = AT (X) + v;

whereA is a nonsingulark � k matrix andv is a k-component
translation vector andX are thek-variate sample points. An affine
equivariant multivariate generalization of the median operator, the
Oja median (OM) [6], is defined and an approximate algorithm is
introduced. This new algorithm is then used in investigating the
implications of equivariance on optimality. Commonly used mul-
tichannel OS-filters such as Vector Median (VM) and Marginal
Median (MM) filters do not possess this equivariance property.
The OM filter does not require covariance estimation. Other affine
equivariant robust filters such as [3, 4], estimate the dispersion ma-
trix. Both the signal value and dispersion matrix need to be esti-
mated in a robust manner.

The paper is organized as follows. In Section 2 the affine
equivariant Oja median [6] is defined and an approximate filtering
algorithm is introduced. The affine equivariance of different error
criteria is discussed as well. In section 3, the importance of affine
equivariance is illustrated in terms of efficiency. Finally in Section

4, filtering examples are given using simulated data and 3-channel
image data. Component variances and correlation structure vary
in test signals. The properties of the Oja median are compared to
VM, MM and the mean vector.

2. EQUIVARIANT MULTICHANNEL OS-FILTER

2.1. Definitions

The affine equivariant multichannel filter studied in this paper is
based on the Oja median [6] defined as follows. Let

x1; :::;xn = (x11; :::;x1k)
T; :::; (xn1; :::xnk)

T

be a random sample from a k-variate distribution. Let

P = fp = (i1; :::; ik) : 1 � i1 < ::: < ik � ng

be the set ofN =
�
n
k

�
differentk-tuples of the index setf1; :::; ng.
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The volume of the simplex formed byp = (i1; :::; ik) and a can-
didate estimate� = (�1; :::; �k)
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det
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where the index ofxii refers to the index setP . The multivariate
Oja median̂� minimizes the sum of the volumes of the simplices

Dn(�) =
X
p2P

Vp(�); (2)

where the sum is taken over all subsetsp 2 P . In case of3-variate
signals the simplexVp(�) is a tetrahedron and in bivariate case its
a triangle. The idea can be traced to the univariate median which
minimizes the sum of absolute distances between the pointsxi and
�, i.e., the sum of volumes of the univariate simplices:

Dn(�) =

nX
i=1

Vi(�) =

nX
i=1

jxi � �j :

Note that the sample mean vector minimizes the sum of the squared
volumes. The influence function of Oja median is uniformly bounded
(see [5]). The breakdown point of the Oja median depends on the
dispersion of the corrupted points. The breakdown point is at least
1� 2�1=k and1=k if the corrupted points equal.



2.2. Approximate algorithm

Any algorithm for solvingL1 regression problems can be used for
computing Oja median as can be seen from (1) and (2). However,
an exact algorithm for computing the OM would require extensive
computation. Therefore, an approximate algorithm which selects
the solution among the original observations is presented:

1. In processing window ofn vectorsxi; i = 1; :::n, for each
vectorxi calculate the sum(2)

Di =
X
p2P

Vp (xi) :

2. The output is the vectorxi yielding the minimum of sums
Di.

3. If the minimum is not unique, i.e., a tie occurs, the output
have to be chosen from the set of input vectorsxi yielding
the minimum sumDi.

The observations are assumed to be in general position. In case
of k-channel signals this means that no collection of more than
k samples is allowed to fall into(k � 1)-dimensional subspace.
However, if signal values in each channel are quantized to discrete
values as in the case of color images, ties may occur. The ties are
resolved as follows: If we have multiple candidates yielding the
minimum for the error criterion, we choose the most frequently
occurring one. If the tie is not yet resolved we choose the candidate
which is closest to the value at the center of the processing window.

In order to illustrate how to apply the filter defined above, we
use 3-channel data such as RGB color image. LetR;G;B denote
the 3 channels. Then each sample is given byxi = (Ri;Gi;Bi)

T.
If a 3 � 3 processing window of9 samples is used, the volume of
the first simplex formed with the output candidate�̂ = xj may be
obtained by

V1(xj) =
1
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wherej = 1; :::; 9. The constant1
3!

can be left out.

2.3. Affine equivariant performance measure

In multichannel filtering applications the Mean Square Error (MSE)
is most commonly used performance measure. This measure, how-
ever, is equivariant only under orthogonal, rigid body transforma-
tions. Therefore, does not take into account different scales and
correlations among channels. Bensmail and Celeux [2] proposed
eigenvalue decomposition for the error covariance matrix in the
form

C = �U�UT ;

whereU is the matrix of eigenvectors,� is a diagonal matrix with
the normalized eigenvalues (det(�) = 1) on the diagonal and� is
the Wilk’s generalized variance. Termsscale, shape and orienta-
tion are used for items�,� andU . Generalized variance is related
to the determinant of the error covariance matrixC whereas the
Mean Square Error is related to the trace ofC. The determinant
behaves properly under affine transformations described by non-
singular matrixA because

det(ACAT ) = det(A)det(C)det(AT) = (det(A))2det(C):

3. IMPLICATIONS OF EQUIVARIANCE

In this section we study the benefits of affine equivariant filters
in case the component variances or correlationg among compo-
nents change. The performance is measured in terms of relative
efficiencywhich is the ratio of error variances of two estimators.
The other estimator may also be the optimal estimator yielding the
smallest possible error variance. The efficiency of affine equivari-
ant Oja median (OM) is compared to marginal median which is
scaling equivariant, and to VM which is equivariant under orthog-
onal transformations.

The limiting distribution ofn1=2(�̂ � �) for OM has been shown
to bek-variate normal. This holds for mean, VM and MM as well.
Hence, one can compare the asymptotic efficiencies using asymp-
totic covariance matrices. For an underlying multivariate normal
distribution the OM has good efficiency properties with respect to
an optimal estimator (sample mean). For example, some values of
the asymptotic marginal variance ratios (efficiencies)e as function
of the dimensionk in this comparison are.

(k; e(k)) = (2; 0:785); (3; 0:849); (6; 0:920):

If the underlying distribution is elliptic, the asymptotic efficiency
of Oja median is superior to that of VM. In the spherical case the
efficiencies equal. As an example, writee1 ande2 for the marginal
efficiencies of the bivariate Oja median with respect to the bivariate
VM. In the spherical case,

e1 = e2 = 1:0

If we then rescale the first component by multiplying it by�, the
efficiencies as a function of�, e1(�) for the first component and
e2(�) for the second component, are

e1(2) = 1:02 e2(2) = 1:04
e1(5) = 1:10 e2(5) = 1:23
e1(100) = 1:22 e2(100) = 4:90

e1 goes to1; 23 and e2 to the infinity as� goes to the infinity.
This means that if the variance of the first component is large as
compared to the second component variance, the efficiency of the
second component estimate may be really poor.

4. EXAMPLES

Simulated multichannel data and multichannel RGB color images
are used in filtering examples. The performance Oja median (OM),
VM and MM filters is evaluated quantitatively using Generalized
Variance (GV) and MSE measures.

4.1. Illustration of benefits of equivariance

The benefits of affine equivariance are demonstrated in a simu-
lation. The simulation is performed using 100 realizations of 49
observations from bivariate Gaussian distribution. In Figure 1,
spherically distributed data are transformed into elliptically dis-
tributed data by applying an affine transformation. As a result, the
eigenvalues and eigenvectors of the data covariance matrix change.
Scatter plot of 100 filter outputs is given in case no transformation
is performed (�21 = �22 = 1:0, left column), one component is
scaled (�21 = 100, middle column) and eigenvectors of the covari-
ance matrix are rotated by�=4 (right column). The output is here
restricted to be one of the input values both in the OM and VM
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Figure 1: Affine equivariant OM filter behaves properly under affine transformations whereas the variance of the estimates increases for
VM and MM because they do not possess the equivariance property. Scatter plots of 100 estimates are given in case no transformation
is performed (left column), one component is scaled (middle column) and eigenvectors of the covariance matrix are rotated by�=4 (right
column). (I) Change of variance (middle column) in one signal component causes increase in the variance of estimates obtained by VM
(middle row) filter whereas the MM (I.a1-a2) and OM (I.c1-c3) filters behave properly. In 3rd column, also rotation is applied and the
scatter of MM estimates increases significantly. (II) Transformations by scaling an eigenvalue (middle column) and rotating eigenvectors
of the covariance matrix (right column) increase the variance of the estimates obtained by MM filter (II.a3) and VM (II.b2, the other
component) whereas the OM (bottom) filter commutes.

Table 1: Generalized variances and MSE for the simulated data.

No transf. Scaling Affine
GV MSE GV MSE GV MSE

MM 0.0012 0.036 0.0012 0.036 0.0053 0.118
VM 0.0020 0.046 0.0034 0.074 0.0034 0.074
OM 0.0018 0.044 0.0018 0.044 0.0018 0.044

filtering algorithms. In Fig. 1 (I), obtained estimates are retrans-
formed back to original coordinate system. The dispersion of the
outputs obtained by Oja median remains the same because of its
affine equivariance property as can be seen in (I.c2-c3). MM com-
mutes with scaling as can be seen from Fig.1 (I.a2) but dispersion
increases when eigenvectors are rotated (I.a3). In VM filtering, the
scaling of the first signal component makes it a dominant one and
the variance in the estimates of the other signal component is sig-
nificantly increased which can easily be observed from Fig.1 (I.b2,
II.b2). VM commutes with the rotation of eigenvectors (I.b3). Fig.
1. (II) shows the scatter plots in case where no retransformation
back to the original coordinate system is made. For the VM (II.b1-
b3) and OM, the scatter in the right column remains otherwise the
same as in the middle except for the rotation (II.c1-c3) whereas the
variance in the estimates produced by MM (II.a1-a3) is increased.

Quantitative results for the simulation above are given using
GV and MSE performance measures. In the first case no transfor-
mation is applied to the data, in the second case data are rescaled
and in the third case full affine transformation is applied by rotating
and rescaling data. The filters are then applied and retransforma-
tion back to original coordinate system performed.

Table 2: Generalized variance and average component MSE: Mul-
tivariate Gaussian noise with unequal component variances(�21 =
400,�22 = 225,�23 = 100; � = 0:7) is added to the image and10%
of the samples are replaced by outliers, which have minimum or
maximum signal value with equal probability.

Algorithm GV MSE
OM 78:4 � 104 126.8
VM 51:5 � 104 99.4

4.2. Example using 3-channel RGB-data

In case of RGB image data, correlated Gaussian noise with un-
equal component variances is added to original image. Further-
more, contaminated data are created by replacing 10% samples
with outliers having minimum or maximum signal value with equal
probability. The filter is compared to VM filter quantitatively using
MSE and GV. The results are given in Table 2. The results indicate
that VM has lower MSE because it has lower bias. The larger bias
in OM is due to its low breakdown point. In qualitative compari-
son we study detail preservation, in particular, edge preservation.
Fig. 2 depicts the contaminated image data and a subimage where
several edges appear. The Oja median appears to preserve edges
better. In practice ties occur quite frequently, hence the procedure
for resolving ties has an impact on both the quantitative and quali-
tative results.

5. CONCLUSION

In this paper, we investigated the affine equivariance property of
nonlinear multichannel filters. The OM filter possess such prop-
erty. We illustrated that the efficiency of OM filter is not lost even
if the signal component variances or correlations among the com-
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Figure 2: (a) The original Room256 � 256 RGB color image contaminated by multivariate Gaussian noise with unequal component
variances (�21=400,�22=225,�23=100,� = 0:7). Moreover, 10 % of the samples are replaced by outliers which have minimum or maximum
signal value with equal probability. (b) A detail from the original image without added noise and (c) from the contaminated image. The
filter outputs obtained by (d) Oja median and (e) Vector Median (VM) filters using3� 3 processing window are shown as well. The output
of Oja median appears less blurred.

ponents change whereas the efficiency of scaling (MM) and or-
thogonal equivariant (VM) filters decreases. We also introduced
an approximate algorithm for computing the affine equivariant OM
output. The behavior of MSE and GV performance measures un-
der affine transformations was investigated as well. Benefits of
affine equivariance were illustrated in a simulation and an exam-
ple using 3-channel RGB image data was presented. In the latter
task, the OM filter preserves edges better than the VM filter but
has higher MSE because of bias caused by outliers. The computa-
tional complexity of OM is high which suggests the use of filters
that employ covariance estimation [3] in case signal components
are correlated and have unequal variances.
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