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ABSTRACT

We describe a parsimonious model for the direction-
dependent transfer function of the pinna. The model
describes the transfer function with reference to res-
onators located in particular physical positions rela-
tive to the ear canal. The purpose of the work is to
provide a parametric model that permits identi�cation
with moderate data-gathering, and �lter speci�cation
for any direction without the need for interpolation of
responses.

1. INTRODUCTION

We set out to produce a parametric model that would
be capable of describing the head-related transfer func-
tion (hrtf) of the pinna for arbitrary directions, based
on observations in a �nite number of directions. The
initial objective was to produce sound maps of the en-
vironment for use by blind persons, but it has emerged
that entertainment and ergonomic displays are likely to
be the major applications. It was considered desirable
to include in the model proper phase or time-domain
behavior as there is some belief that such information
can be important perceptually for some classes of sig-
nals, although this is a question that needs to be set-
tled.

Earlier work, [Kistler and Wightman, 1992], de-
pends on parameterising principal component mod-
els of the spectral transformations with minimum
phase. The main purpose of such models is appar-
ently that they provide an economical method for
de�ning approximate �lters for each of the direc-
tions for which measurements have been made. The
[Kistler and Wightman, 1992] model is used for ap-
proximating the measured transfer function from a few
coe�cients, but not for interpolating. The interpola-
tion law for the coe�cients may not be simple. A sig-
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ni�cantly di�erent approach which is somewhat bet-
ter related to the physics of the situtaion is repre-
sented in [Chen et al., 1992] where the hrtf is consid-
ered to come about from multiple scattering. A more-
recent work [Blommer and Wake�eld, 1997] uses pole-
zero modelling, and discovers that some 40 poles and
40 zeros were needed. That paper uses a logarithmic
spectral criterion, which appears sensible from a per-
ceptual viewpoint, and it retains phase details.

We approached the problem by considering that a
pole-zero model might be e�cient because the system
is linear and time-invariant (LTI). We noted that the
poles of any LTI system are not in
uenced by the pat-
tern of excitation, but the zeros may be. In the direc-
tional hearing case the direction of arrival would in
u-
ence the strengths and phases of the pole excitations.
We proposed that the migration of the zeros with di-
rection of arrival might be described by moderately-
simple nonlinear functions while the poles remained
�xed. Several approaches to the pole-zero identi�ca-
tion were attempted with poor results until we realized
that a key aspect of the directional dependence is the
time delay of the excitation of the poles.

Fig.1 illustrates the fact that separate pole systems
excited with di�erent delays can produce complicated
zero e�ects that may well escape conventional pole-zero
modelling. In general, for a sampled-data representa-
tion, the number of zeros corresponds to the order of
the numerator of the transfer function, which cannot be
less than the di�erential delay between superimposed
time components. For a continuum system the delays
would correspond to fractional sampling intervals and
the result is, to say the least, not convenient. It is the
locations of the zeros of the head-related transfer func-
tions which constitute the all-important directional in-
formation that the pinna imposes on the acoustic signal
and so we need proper modelling methods.
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Figure 1: E�ects of damped cosines added with delays.
(a), (b) pole responses; (c) superimposed, no delay;
(d) superimposed with +12 (full line) and -12 (dashed)
sample delays; (e) logarithmic magnitude of transfer
function with no delay; (f) logarithmic magnitude of
transfer function of composite with relative delays. the
full and the dashed lines correspond between (d) and
(f).

2. RECOGNITION OF A BOTTLE MODEL

In an e�ort to recognise trends in the data we displayed
the unit-pulse time-series of the direction-related im-
pulse responses for sources on the saggital plane at
various elevations in several ways. When the data were
displayed as an image of intensity (Fig. 2(top image))
we noticed repetitions of arc-shaped patterns, some-
what akin to the ripples on a pond, and that there
appeared to be several with di�erent frequencies. The
data for this �gure are the �rst 80 samples following
detection of a wave of signi�cant amplitude, ie. they
are experimental data super�cially aligned at the ap-
parent commencement of activity. Each row in each
image is a time-series at a particular direction.

Since the data were time-series, we tried separat-
ing the patterns by �ltering the data into likely bands.
The lower four images in Fig. 2 show early results of
this process; the bands were chosen simply by count-
ing the ripples and relating them to the repetition fre-
quency, and selecting Fourier components centred on
each guessed frequency. The ripple patterns are seen
to be separated.

A model that is consistent with these observations
is shown in Fig.3 in a simpli�ed 2-dimensional form.
In this \bottle" model there are Helmholtz resonators
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Figure 2: Image presentation of data. Time is from left
to right, 80 samples at 44100 Hz sampling rate. Each
of the 27 rows corresponds to an angle of elevation,
from -40 deg. to 220 deg. at 10 deg. intervals. Top
image: original data; lower images are low-pass,and
then progressively higher frequency bands.

with their necks located at speci�c positions in space
such that the times at which they are excited depend
on the directions of arrival of the �eld from a dis-
tant source. The model neglects di�raction e�ects as
such, but it may approximate them through appropri-
ate poles. The resonances of the ear canal constitute a
�lter that is convolved with the aggregate of arrivals,
and so the poles of the canal appear in all transfer func-
tions. The curvature of the patterns corresponds to the
pattern of delay. We see that each delay, for example,
T1, is a sinusoidal function of the direction of arrival,
and the amplitude of the sinusoid is equal to the dis-
tance of the relevant bottle from the nominal centre of
the rotation (which may or may not be the portal of
the ear canal).

3. IDENTIFICATION OF BOTTLE MODEL

To �x ideas, consider the simple model shown in Fig.4.
This shows a bottle Bk located in the plane of the ar-
rival at position rk 6 �k, and the direction of arrival of
the signal from the source is �a. The time of arrival at
the ear canal of a signal re-transmitted by that bottle
is

Tk;a =
ra

c
�

rk

c
cos(�a � �k) + Tk (1)

where ra is the distance of the source from the centre
of rotation, c is the velocity, and Tk is the delay from
the kth bottle to the canal portal. Clearly this model
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Figure 3: Principle of bottle model. (a) Simple geo-
metric model with two \bottles" (resonators), A and
B, showing how signals are received at the ear canal
with delays T0, T1+TA and T2+TB, dependent on the
direction of arrival. (b) Contributions s0(t); sA(t), and
sB(t) and their sum at the ear canal.

displays sinusoidal variation of any resonant response
in the ear canal itself; such is accommodated by setting
Tk= 0 for the direct path. The important components
of this equation for identifying the locations of the bot-
tles are rk and �k.
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Figure 4: Geometry for kth coplanar bottle Bk and
source.

Thus we simply need to identify the rk and �k for
each bottle, and since we may be able to constrain the
bands to have but one bottle per band this is not a
di�cult task.

4. THE IDENTIFICATION PROCESS

1. The relevant bands were chosen initially by ag-
gregating the magnitudes of the discrete Fourier
transforms (DFTs) of the impulse responses for
many directions; some such spectra are shown in
Fig.5. Since the poles are unchanged, this process
reveals the peaks corresponding to the poles. Ac-
tually the sum was smoothed with a rectangular

window of 6 samples before peak detection. A
later step explains how the bands were re�ned.
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Figure 5: Several spectra as used for initial identi�ca-
tion of relevant frequency bands.

2. For each peak a band centred at that frequency
was chosen. Then for each direction of arrival
the corresponding DFT coe�cients were retained
and used to synthesize the constrained unit pulse
response.

3. In each band a reference waveform was derived
by aligning the unit pulse responses using a cor-
relation method. Actually some de-damping was
introduced as the band responses tend to be
highly damped and the correlations were not well-
de�ned without it. Then from the aggregate
of the aligned responses a second-order all-pole
system was identi�ed. The correlation coe�-
cient between this second-order response and the
optimally-delayed signals from the band was used
as an indicator of the merit of the choice of band,
and used to re�ne the choice of band cut-o� fre-
quencies. For the data we used the bands were:
1.1 to 6.6 kHz. 6.6 to 13.2 kHz, and 12.1 to 18.7
kHz, but of course these would be dependent on
the pinna used. After optimisation of the bands,
the resultant second-order response was used as
the band reference for identi�cation of the delay
for each direction in that band.

4. Then a sinusoid was �tted to the resultant pat-
tern of delays vs angle, as shown in Fig.6. the im-
portant parameters of this �tted sinusoid are the
amplitude and phase; the frequency is of course
one cycle per 2� radians of elevation.



−50 0 50 100 150 200 250
−15

−10

−5

0

5
Ideal Offsets Required 12.1−18.7 kHz

Elevation (degrees)

D
el

ay
 (

sa
m

pl
es

)

Figure 6: Sinusoid �tted to the pattern of delay vs
angle, for the frequency band 12.1-18.7 kHz.

5. From the �k and rk values the locations of all
bottles relative to some centre are readily found.
An example of the result is shown in Fig.7 which
shows positions identi�ed for the dominant four
bottles. In fact these positions were found in a 3-
dimensional modelling. It is noted that the posi-
tions do not coincide with an obvious mechanical
bottle formation; it is to be expected that res-
onances occur not just in bottle structures, but
also as standing waves between scatterers. Of
course we then expect the coupling to incident
�elds to be direction-dependent, too.
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Figure 7: Positions identi�ed for the dominant three
bottles.

5. CONCLUSIONS

The novel model describes the directional-related
transfer functions in terms of resonators placed at ap-

propriate physical positions. This model is economical
in the number of parameters, is amenable to simple
calculation of the directional impulse response at any
direction. It appears likely that the model can be iden-
ti�ed economically from data taken at a few positions;
if so, then the model should have great advantages over
other models. Further investigation is needed to deter-
mine whether incorporation of magnitude factors for
the contributions will be advantageous. We do not pre-
tend that the system modes are completely described
by poles, as the physical form is really distributed and
the e�ects are probably better attributed to interac-
tions between somewhat distributed scatterers, but this
is a matter of degree. Furthermore, the coupling to in-
cident �elds to be direction-dependent, too.
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