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ABSTRACT

In this paper, we extend our previously proposed Viterbi
Bayesian predictive classi�cation (VBPC) algorithm to ac-
commodate a new class of prior probability density function
(pdf) for continuous density hidden Markov model (CDHM-
M) based robust speech recognition. The initial prior pdf of
CDHMM is assumed to be a �nite mixture of natural con-
jugate prior pdf's of its complete-data density. With the
new observation data, the true posterior pdf is approximat-
ed by the same type of �nite mixture pdf's which retain the
required most signi�cant terms in the true posterior den-
sity according to their contribution to the corresponding
predictive density. Then the updated mixture pdf is used
to improve the VBPC performance. The experimental re-
sults on a speaker-independent recognition task of isolated
Japanese digits con�rm the viability and the usefulness of
the proposed technique.

1. INTRODUCTION

In order to deal with the possible modeling/estimation
errors and/or unknown mismatches between training and
testing conditions, we have been investigating a Bayesian

predictive classi�cation (BPC) approach for robust speech
recognition [2, 3, 4, 5]. In this approach, we use a quite gen-
eral prior pdf (probability density function) p(�j') to char-
acterize the variability of the model parameter � caused by
the abovementioned distortions. We try to average out this
variability while making decision for speech recognition and
such a BPC rule operates as follows:

Ŵ = argmax
W

~p(W jX) = argmax
W

~p(XjW ) � P�(W ) (1)

where X is the observed feature vector sequence to be rec-
ognized, P�(W ) is the language model with parameter �,

~p(XjW ) =

Z



f(Xj�;W )p(�j';W )d� (2)

is called the predictive pdf of the observation X given the
symbol sequenceW , f(Xj�;W ) is the conventional acoustic

model with parameters �, and Ŵ is the recognized symbol
(usually word) sequence of interest embedded in the obser-
vation sequenceX. For a Gaussian mixture continuous den-
sity hidden Markov model (CDHMM) based speech recog-
nition system, we have to use some approximation methods

to compute the predictive density in Eq. (2) and thus pro-
pose a Viterbi approximation method in [5] as follows:

~p(XjW ) ' max
s;l

Z
f (X; s; lj�;W )p(�j';W )d� (3)

where s is the unobserved state sequence and l is the associ-
ated sequence of the unobserved mixture component labels
corresponding to the observation sequenceX. A detailed re-
cursive search algorithm to implement Eq.(3) can be found
in [5]. We observed that an appropriate prior pdf is crucial
for BPC based robust speech recognition. In [5], a con-
strained uniform prior distribution was adopted. In spite
of its simple functional form, it is di�cult to estimate it-
s initial hyperparameters and to update them even when
new data/knowledge become available. As already shown
in [2, 3, 4], by adopting a family of natural conjugate prior
pdf's of the complete-data density of CDHMM, BPC help-
s in many types of distortions [2]. If we can access some
adaptation data, by combining BPC with the data-driven
on-line Bayesian adaptation techniques [1], the prior pdf
can be made more appropriate and thus the robustness of
the speech recognition system can be further enhanced [3].
Furthermore, the knowledge and/or experience of the inter-
action between speech signal and the possible mismatch can
also be used to guide us to obtain a better prior pdf which
can improve the BPC performance as shown in [4].
Motivated by the works in [1, 2, 3, 4], in this paper, we

extend our VBPC formulation to accommodate not only the
abovementioned conjugate prior pdf's of the complete-data

density of CDHMM, but also their �nite mixtures. It is this
�nite mixture approximation approach that this paper fo-
cuses on. More speci�cally, the initial prior pdf of CDHMM
is assumed to be a �nite mixture of natural conjugate prior
pdf's of its complete-data density. With the new observa-
tion data, the true posterior pdf is approximated by the
same type of �nite mixture pdf's. In the operation, we
use an N-best search algorithm to retain the required most
signi�cant terms in the true posterior density according to
their contribution to the corresponding predictive density.
In this way, a more accurate prior/posterior pdf of the H-
MM parameters can be obtained and hopefully the VBPC
performance is improved. The above Bayesian model adap-
tation and VBPC decoding strategy is applied to a speaker-
independent recognition task of isolated Japanese digits to
deal with two types of mismatch between training and test-
ing conditions: i) the mismatch caused by additive white



Gaussian noise, ii) cross-gender mismatch. In the following
sections, we will describe the details of the the proposed
method and the experimental results, and �nally conclude
with a con�rmation of the viability and the usefulness of
the proposed techniques.

2. SEQUENTIAL BAYESIAN LEARNING OF

CDHMM BASED ON FINITE MIXTURE

APPROXIMATION OF POSTERIOR PDF

For the simplicity of the discussion, we consider the iso-
lated word recognition where each word is modeled by an
N-state CDHMM with parameter vector � = (�;A; �),
where � is the initial state distribution, A is the transi-
tion matrix, and � is the parameter vector composed of
mixture parameters �i = f!ik;mik; rikgk=1;2;���;K for each
state i, with the mixture coe�cients !ik, the mean vec-
tors mik , and the precision (inverse covariance) matrices
rik. Given initial prior pdf p(�jW ) and observation sam-
ples Xn = fx1;x2; � � � ;xng, the formal sequential Bayesian
learning is performed as follows:

p(�jXn
;W ) =

f(xnj�;W ) � p(�jXn�1;W )R


f(xnj�;W ) � p(�jXn�1;W )d�

(4)

where 
 denotes an admissible region of the parameter s-
pace, and f(xnj�;W ) is the likelihood function. Start-
ing the calculation from p(�jX0;W ) = p(�jW ), we can
obtain a sequence of prior/posterior densities p(�jX1;W ),
p(�jX2;W ), and so forth, with gradually increased accura-
cy [1]. Theoretically speaking, the posterior pdf after ob-
serving x can be computed as

p(�jx;W ) / p(�jW )�f(xj�;W ) =
X
���

p(�jW )�f(x; �j�;W )

(5)
where �, called a path, denotes a combination of a state path
s and a mixture component label sequence l, and the path
space � consists of all possible �. We further examine the
predictive density of x

f(xjW ) =

Z
p(�jW ) � f(xj�;W ) d� =

X
���

Z
p(�jW ) � f(x; � j�;W ) d� =

X
���

$(xj�;W ) (6)

where $(xj�;W ) =
R
p(�jW ) � f(x; � j�;W ) d�. $(xj�;W )

denotes the component part of the predictive density cor-
responding to the path � in �, which can be computed via
VBPC algorithm in [5]. We notice that the true posteriori
pdf in Eq. (5) is a �nite mixture function, which consists
of numerous homogeneous terms. Each term in turn cor-
responds to a path in �. It is reasonable to pick up the
M most signi�cant terms among �, based on their contri-
bution to the predictive density, i.e. $(xj�;W ), to approx-
imate the true posterior pdf and truncate others in order
to keep computation and memory under control. That is,

�(M) = argmax
(M)
��� $(xj�), where argmax(M) denotes the

operation to choose the M largest items, �(M) denotes the

set of the M most signi�cant terms. Then the approximate
posterior pdf can be expressed as

p(�jx;W ) �

P
���(M) f(x; �j�;W ) � p(�jW )P

���(M) $(xj�;W )

=
X

���(M)

!� � p(�j�;x;W ) (7)

where !� = $(xj�;W )P
���(M) $(xj�;W )

, and p(�j�;x;W ) denotes

natural conjugate prior of the complete-data density given
�, whose form will be explained later.

3. N-BEST BASED IMPLEMENTATION

As a �rst step, we only consider the uncertainty of the mean
vectors in CDHMM. Assuming that we have observed train-
ing data X(n�1), the current prior/posterior pdf follows
Eq.(7) and can be shown as

p(�jX(n�1)
;W ) =

X
�1��

(M)
1

!�1 � p(�jX
(n�1)

; �1;W )

=
X

�1��
(M)
1

!�1 �

NY
i=1

KY
k=1

DY
d=1

r
�
(�1)
ikd

2�
e
� 1

2
�
(�1)

ikd
(mikd��

(�1)

ikd
)2 (8)

where �
(�1)
ikd and �

(�1)
ikd are hyperparameters. The above equa-

tion also gives the form of natural conjugate prior pdf of the
complete-data density given �1 when only mean vectors of
CDHMM are random. When a new data xn becomes avail-
able, the current likelihood function can be approximately
calculated by N-best VBPC algorithm and also expressed
as a summation of M mixtures, i.e.

f(xnj�;W ) �
X

�2��
(M)
2

f (xn; �2j�;W )

=
X

�2��
(M)
2

C
(�2) �

NY
i=1

KY
k=1

DY
d=1

e
� 1

2
�
(�2)

ikd
(mikd��

(�2)

ikd
)2 (9)

where

�
(�2)
ikd =

PT

t=1
xntd�(s

(�2)
t � i)�(l

(�2)
t � k)PT

t=1
�(s

(�2)
t � i)�(l

(�2)
t � k)

(10)

�
(�2)
ikd = rikd

TX
t=1

�(s
(�2)
t � i)� (l

(�2)
t � k) (11)

C
(�2) = �

s
(�2)

1

!
s
(�2)

1
l
(�2)

1

r
r
s
(�2)

1
l
(�2)

1

2�

TY
t=2

a
s
(�2)

t�1
s
(�2)
t

!
s
(�2)
t

l
(�2)
tr

r
s
(�2)
t

l
(�2)
t

2�

NY
i=1

KY
k=1

DY
d=1

exp[�
rikd

2

TX
t=1

[(x2ntd � �
(�2)
ikd

2
)�(s

(�2)
t � i)�(l

(�2)
t � k)]] (12)



From Eq.(4), the new posterior pdf p(�jXn;W ) includes

M2 terms, denoted here as the set �(M
2). Each term of

�(M
2) corresponds to a combination of each �1 in �

(M)
1 and

each �2 in �
(M)
2 . We denote it as �, i.e. � = �1 
 �2. Then

p(�jXn
;W ) /

X
���(M

2)

$(xnjX
(n�1)

; �;W ) � p(�jXn
; � ;W )

(13)
where

$(xnjX
(n�1)

; �;W ) = w�1 � C
(�2) �

NY
i=1

KY
k=1

DY
d=1s

�
(�1)
ikd

�
(�1)
ikd + �

(�2)
ikd

� exp[�
1

2

�
(�1)
ikd �

(�2)
ikd

�
(�1)
ikd + �

(�2)
ikd

(�
(�1)
ikd � �

(�2)
ikd )

2] (14)

and p(�jXn; �;W ) has the same form as p(�jX(n�1); �1;W )

in Eq.(8), with the adapted hyperparameters �
(�)
ikd and �

(�)
ikd

given as follows:

�
(�)
ikd = �

(�1)
ikd + �

(�2)
ikd (15)

�
(�)
ikd =

�
(�1)
ikd � �

(�1)
ikd + �

(�2)
ikd � �

(�2)
ikd

�
(�1)
ikd + �

(�2)
ikd

(16)

In order to reduce the computational and storage
overhead, we still choose the M most signi�cant terms

from �(M
2) based on $(xnjX

(n�1); �;W ), i.e. �(M) =

argmax
(M)

� ��(M
2)

$(xnjX
(n�1); �;W ), and approximate the

posterior distribution p(�jXn;W ) by these M terms:

p(�jXn
;W ) �

P
� ��(M) $(xnjX

(n�1); �;W ) � p(�jXn; �;W )P
� ��(M) $(xnjX(n�1); �;W )

=
X

� ��(M)

w� � p(�jX
n
; �;W ) (17)

where w� =
$(xnjX(n�1);�;W )P

� ��(M) $(xnjX(n�1);�;W )
. The updated pos-

terior pdf p(�jXn;W ) can be used in Eq.(3) in place of
p(�j';W ) to improve VBPC's performance.

4. IMPLEMENTATION ISSUES

One implementation issue is the hyperparameter estimation
of the initial prior pdf, i.e., how to design a suitable prior
pdf from available parameters of the pre-trained CDHMM's.
Following the ideas in [1, 2, 3, 4], we use the initialization

method as follows: �
(0)
ikd = mikd and �

(0)
ikd = � � rikd � cik �

gd,where � > 0 is a weighting coe�cient, cik is a weight
count accumulated for the k-th mixture component of the
state i during training CDHMM's parameters, and gd =
d2 � �d (� > 1:0) is used to avoid over smoothing in higher
dimension of the mean vector.
Another issue is related to the choice of top N mixand-

s in the �nite mixture approximation. In practice, if the
chosen mixands are too similar to each other (it is the case
especially when the mixands are derived from N-best pathes
as in the above N-Best implementation), the �nite mixture
approximation of the posterior pdf can not provide more
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Figure 1. Performance comparison of noisy speech recog-
nition at SNR = 20(dB) as a function of amount of adap-
tation data among methods in which sequential Bayesian
learning is combined with plug-in MAP decoding or VBPC
(with mixture number M = 1; 3; 5)

information than a unimodal approximation. A heuristic
solution to mitigate the problem is to merge those similar
mixands during the N-best approximation process as de-
scribed below. Let the mixands f(xn; �2j�;W ) in Eq.(9) be

indexed by �
(1)
2 ; �

(2)
2 ; � � � ; �

(M)
2 , which correspond to the top

M most signi�cant mixands in �
(M)
2 in order. The dissimi-

larity measure, d(�
(m)
2 ; �

(n)
2 ), between two mixands is simply

de�ned and computed by directly checking the path di�er-

ence between two pathes of �
(m)
2 and �

(n)
2 .

IF d(�
(m)
2 ; �

(n)
2 ) � "1, where we assume m < n and "1 is

a preset threshold;

THEN we merge mixand �
(n)
2 with �

(m)
2 : (i)to remove

mixand �
(n)
2 , (ii)to update the weight of �

(m)
2 as C�

(m)
2 =

"2 � (C
�
(m)
2 +C�

(n)
2 ), where "2 > 0 is another preset constant

to control the merging.
By choosing the control parameters "1 and "2 appropri-

ately, we can obtain the needed mixture approximation of
the posterior pdf.

5. EXPERIMENTAL RESULTS

To examine the viability of the above algorithm, it was
applied to a speaker-independent (SI) recognition task of
isolated Japanese digits where the unknown mismatch ex-
ists between training and testing conditions. We have s-
tudied two types of mismatch: i) the mismatch caused by
additive white Gaussian noise, ii) cross-gender mismatch.
The speech data is selected from ATR Japanese Speech
Database. It contains 0-9 Japanese digit utterances from
60 speakers (half male, half female). Each digit is modeled
by a left-to-right 4-state CDHMM without state skipping
and each state has 6 Gaussian mixture components with
diagonal covariance matrices. Each feature vector consists
of 16 LPC-derived cepstral coe�cients.

5.1. Noisy Speech Recognition

One mismatch to be examined is caused by additive
noise. While SI training is performed on clean speech
data, computer-generated Gaussian white noise is added
to the testing and adaptation data with the same lev-
el of intensity prior to the preprocessing. The exper-
imental results are shown in Figure 1, where \Plug-in-
MAP+Adp" denotes that we use plug-in MAP decision rule
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Figure 2. Performance comparison of cross-gender speech
recognition as a function of amount of adaptation data
among methods in which sequential Bayesian learning is
combined with plug-in MAP decoding or VBPC (with mix-
ture number M = 1; 3)

in speech recognition and an on-line Bayesian learning al-
gorithm (see [1] for details) to adapt CDHMMs' parame-
ters, and where \VBPC+Adp-Mix1", \VBPC+Adp-Mix3",
and \VBPC+Adp-Mix5" denote that VBPC decision rule
is used in speech recognition and the prior/posterior pdf
of CDHMM is approximated by one, three, and �ve mix-
ture pdf's respectively in each step of adaptation. It is
shown that VBPC method surpasses the conventional plug-
in MAP decision rule when no knowledge about mismatch
is available at the beginning. The performance of VBPC
can be further improved via incremental adaptation of the
prior/posterior pdf continuously with new adaptation da-
ta. It is observed that VBPC consistently outperforms the
plug-in MAP decoding in this case. In addition, a bet-
ter performance of VBPC can be achieved by using three
mixture components in the prior/posterior pdf than a u-
nimodal pdf if the pdf mixands are appropriately pruned
and merged as described above. But only a slight improve-
ment has been observed when we further increase mixture
number from three to �ve.

5.2. Cross-gender Speech Recognition

We have also examined a more general mismatch caused
by gender di�erence. In the cross-gender experiments, we
train the CDHMMs with all the female speech data. The
male speech data are divided into two sets. One is used
for adaptation and another for testing. The experimental
results are shown in Figure 2. A similar learning behavior
is observed here as the one in noisy speech recognition. We
observe that the initial improvement of VBPC over plug-in
MAP rule without any adaptation data is minor compar-
ing to that in noisy speech recognition. However, a larger
improvement has been observed when we replace unimodal
pdf with three-mixture pdf. It suggests that mixture ap-
proximation helps more when dealing with a more complex
mismatch situation.

5.3. Convergence Property of VBPC

The convergence property of the sequential Bayesian learn-
ing in terms of the recognition accuracy improvement based
on VBPC and plug-in MAP decoding in noisy speech recog-
nition is displayed in Figure 3. The results show that the
on-line Bayesian learning schemes maintain a good asymp-
tomatic convergence property in both VBPC and plug-in
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Figure 3. Convergence property comparison at SNR =
20(dB) among methods in which sequential Bayesian learn-
ing is combined with plug-in MAP decoding or VBPC (with
mixture number M = 1)

MAP decision rules.

6. DISCUSSION AND CONCLUSION

The experimental results show that it is helpful to use a �-
nite mixture approximation in both Bayesian learning and
VBPC calculation. The improvement greatly depends on
how properly the true pdf is pruned. Furthermore, in the
current implementation, the new precision information in-

corporated in Bayesian learning procedure, namely �
(�2)
ikd in

Eq.(15), is directly derived from pre-trained model's preci-
sion as in Eq.(11). Thus we can not warrant that the up-
dated posterior pdf's reect the mismatch more accurately.
To take uncertainty of both mean and precision parameters
simultaneously into account might be helpful. The sequen-
tial learning of a mixture distribution, which has no su�-
cient statistics with a �xed dimension, seems to be a quite
challenging problem. Although the formal Bayesian learn-
ing theoretically converges to the optimal solution under
the condition of unlimited memory and calculation, only
suboptimal methods can be implemented in practice. The
N-Best implementation studied here is sensitive to mixands
pruning, selection, and merging in the sequential adapta-
tion procedure. More e�orts are still needed to look for a
better prior pdf in BPC approach.
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