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ABSTRACT

Low-complexity schemes for digital encoding of a noise-cor-
rupted signal and associated signal estimators are presented. This
problem arises in wireless distributed sensor networks where an
environmental signal of interest is to be estimated at a central site
from low-bandwidth digitized information received from collec-
tions of remote sensors. We show that the use of a properly de-
signed and often easily implemented additive control input before
signal quantization can significantly enhance overall system per-
formance. In particular, efficient estimators can be constructed and
used with optimized pseudo-noise, deterministic, and feedback-
based control inputs, resulting in a hierarchy of practical systems
with very attractive performance-complexity characteristics.

1. INTRODUCTION

In a number of existing and future wireless sensor networks, sensor
dynamic range and resolution are often severely limited due to ei-
ther physical limitations in sensor design, or power and bandwidth
constraints in the communication link back to the central site. In
such cases, quantization is an integral part of the sensor model and
can be viewed as a digital encoding of the environmental signal be-
ing acquired. In this paper, we develop low-complexity schemes
that perform digital encoding of the environmental signal of in-
terest at each sensor prior to transmission to the central site, and
also present efficient estimators of the environmental signal from
these digitized encodings. Depending upon bandwidth and power
resources, the central site may or may not broadcast information
back to these sensors; both scenarios will be considered.

In order to overcome the dynamic range and finite-precision
constraints due to quantization—or, equivalently, obtain an effec-
tive digital encoding—we consider the use of a control input added
to the information-bearing signal before signal quantization. We
focus on the single-sensor case; the associated block diagram is
shown in Fig. 1, whereA[n] denotes the information-bearing sig-
nal,v[n] represents sensor noise,w[n] is a control input, andy[n]
denotes the quantized signal based on whichA[n] will be esti-
mated. Multi-sensor extensions of the single-sensor systems we
present can be easily developed [2].

We focus on the static case of the estimation problem depicted
in Fig. 1 whereA[n] = A, i.e., we examine the problem of estimat-
ing an unknown parameterA from quantized noisy observations.
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Figure 1: Signal estimation from quantized noisy observations in
the context of an additive control input.

This case reveals several key features of signal estimation based
on observations from a system comprising a control input and a
quantizer. Extensions to time-varying inputs are developed in [3].

Several basic variations of the estimation problem in Fig. 1
can arise in practice, which differ in the control information that is
available for estimation and the associated freedom in the control
input selection. For pseudo-noise control inputs whose statisti-
cal characterization alone is exploited at the receiver, we show that
there is an optimal power level for minimizing the mean-square es-
timation error (MSE). The existence of a non-zero optimal pseudo-
noise power level reveals strong connections to the phenomenon of
stochastic resonance, which is encountered in a number of phys-
ical nonlinear systems [1]. Performance can be further enhanced
if detailed knowledge of the control waveform is exploited at the
receiver. In this scenario, we develop methods for judiciously se-
lecting the control input from a suitable class of periodic wave-
forms for any given system. Finally, if feedback from the quan-
tized output to the control input is available, we show that, when
combined with suitably designed receivers, these signal quantizers
come within a small loss of the quantizer-free performance.

2. SYSTEM MODEL

As outlined in Sec. 1, we consider the problem of estimating an
unknown parameterA from observation of

y[n] = F (A+ v[n] +w[n]) n = 1; 2; � � � ; N ; (1)

where the sensornoisev[n] is an independent identically-distributed
(IID) process,w[n] is a control input, and the functionF (�) is an
M -level quantizer, with the quantized outputy[n] takingM dis-
tinct valuesY1; Y2; � � � ; YM , i.e.,

F (x) =

�
Yi if Xi�1 � x < Xi; for 2 � i �M
Y1 otherwise

; (2)

whereX0 = �1 andXM =1. We also define the sequence

s[n]
4
= A+ v[n] = A+ �v ~v[n] : (3)



We will often be interested in system performance for a family of
sensor noises parameterized by�v in (3), arising from scaling an
IID sequence~v[n]. We usepz (�) to denote the probability density
function (PDF) of any sample of an IID sequencez[n], andCz (�)
to denote one minus the associated cumulative distribution,i.e.,

Cz (x) =

Z 1

x

pz (t) dt :

We refer to an IID process asadmissibleif the associated PDF is
non-zero and smooth (i.e., C1) almost everywhere. Throughout
the paper, we assume that all noise processes are admissible, in-
cludingv[n]and alsow[n], whenw[n] is viewed as a pseudo-noise
process. Also, when referring to a Gaussian process we assume it
is IID and zero-mean.

3. PERFORMANCE LIMITS

In this section we quantify the performance degradation that re-
sults from estimatingA based on observation ofy[n] instead of
s[n]. We first introduce the concept ofinformation loss, which we
use as a figure of merit to design quantizer systems and evaluate
the associated estimators. We then present a brief preview of per-
formance limits based on this notion for a number of important
scenarios and finally consider these performance limits in detail.

We define the information loss for a quantizer system as the
ratio of the Cram´er-Rao bounds for unbiased estimates of the pa-
rameterA obtained viay[n] ands[n], respectively,i.e.,

L(A) 4= B �A; yN�
B (A; sN )

; (4)

whereB �A; yN� is the Cram´er-Rao bound for estimatingA from

y
N 4

=
�
y[1] y[2] � � � y[N ]

�T
; (5)

and whereB �A; sN� andsN are defined similarly. When viewed
in dB the information loss represents the additional MSE in dB that
arises from observingy[n] instead ofs[n] in the context of efficient
estimation ofA. From this perspective, better systems achieve
smaller information loss over the parameter range of interest.

Taking into account the inherent dynamic range limitations of
these quantizers, we assume that the unknown parameter takes val-
ues in the range(��; �), with � assumed to be known.

Worst-case performance is used to characterize the overall sys-
tem; we define the worst-case Cram´er-Rao bound and worst-case
information loss via

Bmax (�)
4
= sup
jAj<�

B
�
A; yN

�
; (6)

and

Lmax(�)
4
= sup
jAj<�

L(A) ; (7)

respectively. BothBmax andLmax are functions of other system
parameters, such as�v andF (�), the dependence on which is sup-
pressed for convenience in the above definitions.

As a consequence of the linear model (3) we obtain

B
�
A; sN

�
= �2v B (0; ~s) =N ; (8)

Order of information loss growth

Control Input Gaussian case General case

Control-free case e�
2=2 > �2

Pseudo-noise �2 �2

Known input � �

Feedback-based input 1 1

Table 1: Order of growth of infomation loss as a function of
� = �=�v for large� and for anyM -level quantizer. The Gaus-
sian case refers to Gaussian sensor noise of variance�2v. The gen-
eral case includes any (admissible) sensor noisev[n] = �v ~v[n].

whereB (0; ~s) is the Cram´er-Rao bound for estimatingA from a
single sample of the IID sequence~s[n]. Hence, sinceB �A; sN�
is independent ofA, bothBmax (�) andLmax(�) can be used
interchangeably to assess the performance of signal quantizers.

Table 1 summarizes the performance limits for a number of
important scenarios. In any of these scenarios the worst-case in-
formation loss can be conveniently characterized in terms of the
ratio� = �=�v, which we may view as a measure of peak-signal-
to-noise ratio (SNR). Specifically, for pseudo-noise control inputs
with properly chosen power levels the worst-case information loss
grows only quadratically with�, while it always grows faster than
quadratically in the control-free case for any (admissible) sensor
noise. For scenarios where the control input is known for estima-
tion, the associated worst-case information loss can be made to
grow as slow as�. Finally, if feedback from the quantized output
to the control input is available and properly used, a fixed small
information loss, which is independent of�, can be achieved.

3.1. Pseudo-noise Control Inputs

We next consider control inputsw[n] = �w ~w[n] that are sample
paths of an IID process independent ofv[n], and determine the
performance limits in estimatingA fromy

N by exploiting the sta-
tistical characterization ofw[n] at the receiver. In particular, we
wish to select�w to minimize the worst-case information loss.

Since�[n] = v[n] + w[n] is IID, we haveB �A; yN� =
B (A; y) =N , whereB (A; y) is the Cram´er-Rao bound for esti-
matingA based on a single sample of the IID sequencey[n]. By
taking the second partial derivative of the associated log-likelihood
function with respect toA followed by an expectation, we obtain

B (A; y)=

 
MX
i=1

[p� (Xi�1 �A)� p� (Xi �A)]2

C� (Xi�1 � A)�C� (Xi �A)

!�1
: (9)

Eqn. (9) also provides the Cram´er-Rao bound for estimates ofA
from y[n] in the control-free case where� is replaced byv.

Proper use of pseudo-noise can improve performance over the
control-free system for any (admissible)p~v (�) and for anyM -level
quantizer. LetBmax (�;�v; �w) denote (6) for a given�, �v and
�w. Since~v[n] is admissible, the bound (9) is continuous in�v,
and so isBmax (�;�v; �w). Thus, given any fixed�w > 0 and�,
for small enough�v we have

Bmax (�;�v; �w) � Bmax (�; 0; �w) : (10)

Substitution of (10) and (8) in (7) reveals thatLpnmax(�) � �2 is
achievable for large� . Furthermore, sinceBmax (�;�v; �w) is



also continuous in�w, for anyF (�) with fixedM <1
inf

�w 2 [0;1)
Bmax (�; 0; �w) > 0 ; (11)

which in conjunction with (8) and (10) implies thatLmax can not
be made to grow slower than�2 for pseudo-noise control inputs.

In the case that the sensor noise level is fixed, from (10)–(11)
the optimal worst-case information loss rate is achieved by�w =
�� for any� > 0. For comparison, the control-free worst-case
information loss grows faster than�2 for large� in any sensor
noise [2]. Remarkably, pseudo-noise control inputs with properly
selected power levels improve performance over the control-free
systems at high peak SNR for any sensor noise.

In the special case thatv[n] is Gaussian with variance�2v, and
M = 2 (i.e., F (x) = sgn (x)), the control-free worst-case infor-
mation loss is given by

Lfreemax(�) = 2� Q (�) Q (��) e�2 ; (12)

whereQ (x) =
R1
t=x exp(�t2=2)=p2� dt. For comparison, if

w[n] is Gaussian, the worst-case information loss is optimized
with �w � �=2� for large� [2], and is given by

Lpnmax(�) � 8

�
Q
��
2

�
Q
�
��

2

�
e
�
2

4 �2 : (13)

3.2. Known Control Inputs

We next outline the performance limits for scenarios where the
estimator can exploit detailed knowledge of a suitably designed
control waveform. In particular, we present control input selection
strategies that achieve the minimum possible growth rate of the
worst-case information loss as a function of�.

The Cramér-Rao bound for unbiased estimates ofA based on
y
N and given knowledge of the associatedN samples ofw[n] is

denoted byB �A; yN ; wN
�

and satisfies

B
�
A; yN ; wN

�
=

"
NX
n=1

[B (A+w[n]; y)]�1
#�1

; (14)

whereB (A; y) is given by (9), with� replaced byv. In [2] it
is shown that for any known control input selection method the
worst-case information loss grows at least as fast as�, for any
sensor noise and anyM .

Classes of periodic waveforms parameterized by the periodK
are appealing candidates for known control inputs, since they are
easy to construct and can be chosen so that the worst-case informa-
tion loss grows at the minimum possible rate. In order to achieve
the minimum possible growth rate it suffices to selectw[n] from
a properly constructedK-periodic class for which there is an one-
to-one correspondence between each element in the class andK.
If N is a multiple ofK, optimal selection of the control input in
this case amounts to selecting the periodK that minimizes (14)

Kopt(�; �v)
4
=arg min

K
sup
jAj<�

KPK
n=1 [B (A+w[n]; y)]�1

(15)

whereB (A; y) is given by (9) with� replaced byv.
The construction of theK-periodic class in theM = 2 case

is based on the observation that in the control-free scenario the
worst-case information loss grows with� for fixed �v, i.e., the
information loss is typically largest for parameter values that are

furthest from the quantizer threshold. To optimize over the worst-
case performance, we construct theK-periodic waveformw[n] so
as to minimize the largest distance between anyA in (��; �) and
the closesteffectivequantizer threshold. Specifically, we consider
K-periodic sawtooth control inputs, namely,

w[n] = �w �
�
�K � 1

2
+ n mod K

�
; (16)

where the effective spacing between thresholds is given by�w =
2�=(K� 1). The net effect ofw[n] from (16) and the symmetric
two-level quantizer is equivalent to a two-level quantizer with a pe-
riodically time-varying threshold that comes within at least�w=2
of any possible parameter value once everyK samples.

In the context of the class (16), strategies that selectK so as to
keep a fixed sawtooth spacing�w achieve the minimum possible
growth rate. In particular, if we selectK in (16) via

K = d��+ 1e (17)

where� > 0, the worst-case information loss grows linearly with
� [2]. In general, there is an optimal� for any p~v (�), resulting
in an optimal normalized sawtooth spacing. Specifically, consider
the normalized sawtooth spacing, namely,d(�;K) = �w=�v =
2�=(K � 1), and letdopt(�) denote the normalized spacing as-
sociated with the optimal periodKopt(�) from (15). A method
for computing the asymptotic optimal normalized spacingd1 =
lim�!1 dopt(�) associated with a particularp~v (�) is also out-
lined in [2]. For instance, if the sensor noise is Gaussian with
variance�2v, we haved1 � 2:5851, while for large� [2]

Lpermax (�) � 1:4754

�
2�

d1
+ 1

�
: (18)

K-periodic sawtooth waveforms similar to (16) can be used as
known control inputs in quantizer systems withM > 2, and can
be chosen so that the worst-case information loss grows as�. In
this case, the existence of multiple quantizer thresholds allows for
reduction of the dynamic range that eachw[n] needs to span [2].

3.3. Control Inputs in the Presence of Feedback

In this section we develop performance bounds for estimates ofA
based onyN , where the control inputw[n] is a function of all past
quantized observations. In particular, we show that the worst-case
information loss for any feedback-based control input strategy is
lower bounded by theminimumpossible information loss for the
same system withw[n] = 0. As (14) reveals, for anyjAj <
� we can obtain information loss equal toL(A�) by selecting
w[n] = A� � A. In particular, if there exists a realA� for which
B (A; y) � B (A�; y) for all realA (whereB (A; y) is given by
(9) with� replaced byv), then using (14) and (8) in (4) we obtain

L
�
A;wN

�
� L (A;A� � A) = L(A�) ; (19)

with equality achieved forw[n] = A� � A, 1 � n � N , where
L(A) is given by (4), andB (A; y) by (9) with� replaced byv.

The minimum information loss from (19) decreases as the
number of quantization levels increases; as expected,L(A�) tends
to zero asM approaches infinity for any sensor noise [2].

For the symmetric two-level quantizer in Gaussian noise, use
of (9) for �� = �v in (4) reveals thatA� = 0 and

L
�
A;wN

�
� L(0) = �

2
: (20)
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Figure 2: Worst-Case information loss overjAj < � for a two-
level quantizer in Gaussian noise of variance�2v, for various con-
trol strategies. The dotted curve depicts (18). The lower dashed
line depicts the minimum possible information loss (� 2 dB).

Fig. 2 depicts the worst-case information loss of the two-level
quantizer in Gaussian noise for the control input scenarios that
we have examined. As the figure reflects, the performance of the
control-free system (solid curve) degrades rapidly as� increases.
The benefits of pseudo-noise control inputs (upper dashed curve)
at high peak SNR are clearly evident, and known periodic con-
trol inputs provide additional performance benefits (middle dashed
curve) over pseudo-noise control inputs. Finally, in the presence
of feedback from the quantized output to the control input, the per-
formance is lower bounded by the minimum possible information
loss of approximately2 dB from (20), which is independent of�.

4. EFFICIENT ESTIMATION

We next outline control input selection methods and associated es-
timators which achieve the performance limits developed in Sec. 3,
for the Gaussian noise scenario in the context of pseudo-noise and
feedback-based control inputs. Estimators for known control in-
puts as well as extensions to the nonGaussian case are developed
in [2]. A natural measure of performance for a specific system
comprising a control input, a quantizer and an estimator is theMSE
loss, which we define as the ratio of the actual MSE of this esti-
mator ofA based on observation ofyN , divided byB �A; sN�.
Analogously toLmax in (4), the worst-case MSE loss of an esti-
mator is defined as the supremum of the MSE loss overjAj < �.

4.1. Pseudo-noise Control Inputs

For pseudo-noise control inputs, the maximum-likelihood (ML)
estimator ofA based onyN overjAj � � satisfies

ÂML

�
y
N ;�

�
= arg max

j�j��
lnP

�
y
N ; �

�
; (21)

wherelnP
�
y
N ; �

�
is the associated log-likelihood function.

If F (�) is the symmetric two-level quantizer and since�[n] is
Gaussian, (21) can be found in closed form, by setting to zero the

partial derivative ofln P
�
y
N ;A

�
with respect toA, viz.,

ÂML

�
y
N ;�

�
= �I�

 
�� Q

�1

 
K1

�
y
N
�

N

!!
; (22)

whereQ�1 (�) is the inverse ofQ (�),KYi
�
y
N
�

denotes the num-
ber of elements inyN that are equal toYi, and

I� (x) =

�
x jxj � �
� sgn (x) otherwise

: (23)

Although the ML estimate (22) is asymptotically efficient in the
sense that its MSE converges to the associated Cram´er-Rao bound
(9) for large enoughN , convergence in not uniform inA [2].

For systems withM > 2, (21) can be obtained via an EM
algorithm; by usingx[n] = A + �[n] as the complete data we
obtain [2]

Â
(k+1)
EM =I�

0
@Â(k)

EM+
MX
m=1

��KYm(yN)p
2 � N

b̂
(k)
m�1� b̂

(k)
m

Q
�̂
z
(k)
m�1

�
�Q

�̂
z
(k)
m

�
1
A (24)

initialized with Â(0)
EM = 0, whereẑ(k)m = (Xm � Â

(k)
EM)=��, and

b̂
(k)
m = exp

�
�[ẑ

(k)
m ]2=2

�
. Provided that the likelihood function

does not possess multiple local minima, we haveÂML

�
y
N ;�

�
=

limk!1 Â
(k)
EM. Empirical evidence suggests thatlimk!1 Â

(k)
EM is

also asymptotically efficient.

4.2. Control Inputs in the Presence of Feedback

The analysis of Sec. 3.3 suggests viable control input selection
methods based on past quantized observations. For instance, for
the system withM = 2 we may selectw[n] = �Â[n� 1], where
Â[n] is any consistent estimate ofA based onyn, such as the ML
estimate. In this case, the ML estimateÂML[n] of A based onyn

can be obtained using the following EM algorithm [2],

Â
(k+1)
EM [n]=I�

0
BB@Â(k)

EM[n]+
nX
m=1

�vy[m]p
2� n

exp

�
� (ẑ(k)[m;n])

2

2

�
Q(y[m] ẑ(k)[m;n])

1
CCA (25)

with Â(0)
EM[n] = ÂML[n � 1] andÂML[0] = 0, whereÂML[n]=

limk!1 Â
(k)
EM[n], andẑ(k)[m;n]=(ÂML[m� 1]�Â(k)

EM[n])=�v.
Empirical evidence suggests that (25) achieves the bound (20) for
moderateN . Algorithms that achieve this bound, but require sig-
nificantly fewer computations than (25), are developed in [2], as
are extensions for systems withM > 2 and any sensor noise.
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