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Low-complexity schemes for digital encoding of a noise-cor-  “o"pandvwdn f f et Signal
. . . . . estimate
rupted signal and associated signal estimators are presented. This vin] wln]
problem arises in wireless distributed sensor networks where an Sensor noise ~ Control input

(Quantizer bias)

environmental signal of interest is to be estimated at a central site
from low-bandwidth digitized information received from collec- . . . . . . . .
tions of remote sensors. We show that the use of a properly de_Flgure 1: Signal estimation from _quantlzed noisy observations in
signed and often easily implemented additive control input before the context of an additive control input.

signal quantization can significantly enhance overall system per-__ i L
formance. In particular, efficient estimators can be constructed and iS case reveals several key features of signal estimation based
used with optimized pseudo-noise, deterministic, and feedback-On Observations from a system comprising a control input and a
based control inputs, refting in a hierarchy of practical systems quantizer. Extensions to time-varying inputs are developed in [3].

with very attractive performance-complexity characteristics. Several basic variations of the estimation problem in Fig. 1
can arise in practice, which differ in the control information that is

available for estimation and the associated freedom in the control

1. INTRODUCTION input selection. For pseudo-noise control inputs whose statisti-
cal characterization alone is exploited at the receiver, we show that

there is an optimal power level for minimizing the mean-square es-

timation error (MSE). The existence of a non-zero optimal pseudo-
noise power level reveals strong connections to the phenomenon of
tochastic resonance, which is encountered in a number of phys-
al nonlinear systems [1]. Performance can be further enhanced

In a number of existing and future wireless sensor networks, senso
dynamic range and resolution are often severely limited due to ei-
ther physical limitations in sensor design, or power and bandwidth
constraints in the communication link back to the central site. In

such cases, quantization is an integral part of the sensor model an

can be viewed as a digital encoding of the environmental signal be-j¢ detailed knowledge of the control waveform is exploited at the

ing acquired. I_n_thls paper, we develop I_ow-complex!ty scher_nes receiver. In this scenario, we develop methods for judiciously se-
that perform digital encc_)dlng of the (_an\_/lronmental signal .Of n- ecting the control input from a suitable class of periodic wave-
terest at each sensor prior to transmission to the central site, anc&orms for any given system. Finally, if feedback from the quan-
also present efficient estimators of the environmental signal from tized output to the control input is available, we show that, when

these digitized encodmg_s. Depending upon bandwndth_ and POWET .5 mbined with suitably designed receivers, these signal quantizers
resources, the central site may or may not broadcast information

. . ; come within a small loss of the quantizer-free performance.
back to these sensors; both scenarios will be considered. q P

In order to overcome the dynamic range and finite-precision
constraints due to quantization—or, equivalently, obtain an effec- 2. SYSTEM MODEL
tive digital encoding—we consider the use of a control input added
to the information-bearing signal before signal quantization. We
focus on the single-sensor case; the associated block diagram i

As outlined in Sec. 1, we consider the problem of estimating an
ynknown parameted from observation of

shown in Fig. 1, wherei[n] der_lotes t_he informat_ion-bearing sig- yln] = F(A+vn] +wn]) n=1,2 -, N, (1)
nal, v[n] represents sensor noise(n] is a control input, ang(n] ) ) _ _ _ o
denotes the quantized signal based on wiigh] will be esti- where the sensornoisgz] is an independentidentically-distributed
mated. Multi-sensor extensions of the single-sensor systems we(llD) processw[n] is a control input, and the functiofi(-) is an
present can be easily developed [2]. M-level quantizer, with the quantized outpyit:] taking M dis-
We focus on the static case of the estimation problem depictedtinct valuesyy, Yz, - -+, Ya, i.e,
in Fig. 1w|£1ereA[n] = A,lt.;r.,fwe exammtgthde prpblerlr; ofesttl_mat- Fix) = Y, #fXia<z<X, for2<i<M o
ing an unknown parametet from quantized noisy observations. Z)=1 v, otherwise ,
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We will often be interested in system performance for a family of Order of information loss growth
sensor noises parameterizeddyin (3), arising from scaling an Control Inout Gaussian casé General case
IID sequence&[n]. We usep; (-) to denote the probability density P
function (PDF) of any sample of an IID sequenge], andC’ (-) Control-free case X272 > 2
to denote one minus the associated cumulative distribuitin, ) 3 2
Pseudo-noise X X
C. (x) = / p= (t) dt . Known input
¥ Feedback-based inpyt 1 1

We refer to an IID process aglmissiblef the associated PDF is

non-zero and smooth.¢., C') almost everywhere. Throughout Table 1: Order of growth of infomation loss as a function of
the paper, we assume that all noise processes are admissible, inx = A/o, for largex and for anyM-level quantizer. The Gaus-
cludingv[n] and alsav[n], whenw[n] is viewed as a pseudo-noise ~ sian case refers to Gaussian sensor noise of varighcEhe gen-
process. Also, when referring to a Gaussian process we assume ieral case includes any (admissible) sensor ndisp= ., t[n].

is IID and zero-mean.

whereB (0; 3) is the Cranef-Rao bound for estimating from a
3. PERFORMANCE LIMITS single sample of the IID sequengi]. Hence, since8 (A4; s™)
is independent ofd, both Br..x (A) and L4 (A) can be used
In this section we quantify the performance degradation that re- interchangeably to assess the performance of signal quantizers.
sults from estimatingl based on observation gfr] instead of Table 1 summarizes the performance limits for a number of
s[n]. We first introduce the concept offormation losswhich we important scenarios. In any of these scenarios the worst-case in-
use as a figure of merit to design quantizer systems and evaluatgormation loss can be conveniently characterized in terms of the
the associated estimators. We then present a brief preview of perratio y = A/a,, which we may view as a measure of peak-signal-
formance limits based on this notion for a number of important to-noise ratio (SNR). Specifically, for pseudo-noise control inputs
scenarios and flna”y consider these performance limits in detail. with proper]y chosen power levels the worst-case information loss
We define the information loss for a quantizer system as the grows only quadratically witty, while it always grows faster than
ratio of the Craref-Rao bounds for unbiased estimates of the pa- quadratically in the control-free case for any (admissible) sensor
rameterA obtained viay[rn] ands[n], respectivelyi.e, noise. For scenarios where the control input is known for estima-
N tion, the associated worst-case information loss can be made to
£(A) A B (A% y ) (4) grow as slow ag. Finally, if feedback from the quantized output
B(A;sN)’ to the control input is available and properly used, a fixed small

_ information loss, which is independentpf can be achieved.
whereB (A; y*) is the Cranef-Rao bound for estimating from

3.1. Pseudo-noise Control Inputs

N2yl w2 - yV
Y it ol NI ©) We next consider control inpuis[r] = o, w[r] that are sample

and where3 (4; V) ands™ are defined similarly. When viewed ~ Paths of an IID process independent:gh], and determine the
in dB the information loss represents the additional MSE in dB that Performance limits in estimating fromy ™ by exploiting the sta-
arises from observing[n] instead ofs[nn] in the context of efficient tistical characterization of[r] at the receiver. In particular, we
estimation ofA. From this perspective’ better systems achieve wish to selectr,, to minimize the worst-case information loss.
smaller information loss over the parameter range of interest. Sincea[n] = v[n] + w[n] is IID, we haveB (4; y™) =

Taking into account the inherent dynamic range limitations of 5 (4; y) /N, whereB (4; y) is the Cranef-Rao bound for esti-
these quantizers, we assume that the unknown parameter takes vafnating A based on a single sample of the IID sequeyieg. By
ues in the rangé—A, A), with A assumed to be known. taking the second partial derivative of the associated log-likelihood

Worst-case performance is used to characterize the overall sysfunction with respect tot followed by an expectation, we obtain
tem; we define the worst-case CranRao bound and worst-case

X . . M 2\ 7!
information loss via N [Po (Xic1 — A) — pa (X — A)]
N . B(A7 y)_<; Ca (Xi—l_A)_Ca (Xl—A) M (9)
Brax (A) = Ssup B (A7 y ) ) (6)
lAl<a Eqn. (9) also provides the CramRao bound for estimates df

from y[r] in the control-free case wheteis replaced by.

and ; -
Proper use of pseudo-noise can improve performance over the
A control-free system for any (admissibje)(-) and for anyM -level
max = 3 7 . .
Lmax(B) |,§F<pA £(4) ) quantizer. LeBin.x (A; 0y, o) denote (6) for a givery, o, and

ow. Sinced[n] is admissible, the bound (9) is continuoussip,
respectively. BotBu.x and L.« are functions of other system  and so iBmax (A; 04, 04 ). Thus, given any fixed., > 0 andA,
parameters, such as andF(-), the dependence on which is sup- for small enouglr, we have
pressed for convenience in the above definitions.
As a consequence of the linear model (3) we obtain Brax (8500, 0w) & Bmax (A;0,04) . (10)

Substitution of (10) and (8) in (7) reveals th&’, (x) ~ x* is

. N p— 2 P
B (A’ S ) =0, B(0; $) /N, ®) achievable for large . Furthermore, sSinc8..x (A; 04, 04) iS



also continuous i, for any £'(-) with fixed M < oo

inf
ow €[0, 0o

Buax (A;0,0,) >0, (11)
which in conjunction with (8) and (10) implies thét... can not
be made to grow slower thay? for pseudo-noise control inputs.
In the case that the sensor noise level is fixed, from (10)—(11)
the optimal worst-case information loss rate is achievea.by=
A A for any A > 0. For comparison, the control-free worst-case
information loss grows faster thay? for large y in any sensor
noise [2]. Remarkably, pseudo-noise control inputs with properly
selected power levels improve performance over the control-free
systems at high peak SNR for any sensor noise.
In the special case thafn] is Gaussian with variance, and
M =2 (i.e, F(z) = sgn(z)), the control-free worst-case infor-
mation loss is given by
2
L) =27Q(x) Q(—x) e, (12
whereQ (z) = [=_ exp(—t*/2)/v/2x dt. For comparison, if
w[n] is Gaussian, the worst-case information loss is optimized
with o, & /2 A for largex [2], and is given by

T ﬁQ
e+ x.

0~ 2Q(2) (-3 (13)

3.2. Known Control Inputs

We next outline the performance limits for scenarios where the
estimator can exploit detailed knowledge of a suitably designed
control waveform. In particular, we present control input selection
strategies that achieve the minimum possible growth rate of the
worst-case information loss as a functionof

The Cranet-Rao bound for unbiased estimates4obased on
y? and given knowledge of the associaf¥dsamples ofu[n] is
denoted by3 (4; y", w'') and satisfies

;

—1

B (A; vV, WN) = Z[B (A+wn]; y)] ™

n=1

(14)

)

whereBB (A; y) is given by (9), witha replaced byw. In [2] it
is shown that for any known control input selection method the
worst-case information loss grows at least as fasg afor any
sensor noise and ary .

Classes of periodic waveforms parameterized by the péfiod
are appealing candidates for known control inputs, since they are

easy to constructand can be chosen so that the worst-case informa-

tion loss grows at the minimum possible rate. In order to achieve
the minimum possible growth rate it suffices to selegt] from

a properly constructeR -periodic class for which there is an one-
to-one correspondence between each element in the clads and
If N is a multiple of K, optimal selection of the control input in
this case amounts to selecting the perddhat minimizes (14)

K
S [B(A+wn]y)]

whereB (A4; y) is given by (9) witha replaced by.

The construction of thé(-periodic class in thé/ = 2 case
is based on the observation that in the control-free scenario the
worst-case information loss grows with for fixed #,, i.e., the
information loss is typically largest for parameter values that are

(15)

i A .
Kopt (A, 0y)=arg min sup
K |Al<a

furthest from the quantizer threshold. To optimize over the worst-
case performance, we construct tieperiodic waveformu[r] so
asto minimize the largest distance betweendimy (—A, A) and

the closeseffectivequantizer threshold. Specifically, we consider
K -periodic sawtooth control inputs, namely,

w[n]:5w~<

where the effective spacing between thresholds is gives, by
2A/(K —1). The net effect ofv[rn] from (16) and the symmetric
two-level quantizer is equivalent to a two-level quantizer with a pe-
riodically time-varying threshold that comes within at leésy 2
of any possible parameter value once ev&rgamples.

In the context of the class (16), strategies that sélesb as to
keep a fixed sawtooth spacidg achieve the minimum possible
growth rate. In particular, if we seleéf in (16) via

K =[Ax+1]

whereX > 0, the worst-case information loss grows linearly with
x [2]. In general, there is an optimal for any ps (-), resulting

in an optimal normalized sawtooth spacing. Specifically, consider
the normalized sawtooth spacing, nameéliy; K) = 6., /0, =
2x/(K — 1), and letd,(x) denote the normalized spacing as-
sociated with the optimal periofl,¢(x) from (15). A method

for computing the asymptotic optimal normalized spacing =
limy o dopt(x) associated with a particulas (-) is also out-
lined in [2]. For instance, if the sensor noise is Gaussian with
variancer?, we haved., = 2.5851, while for largey [2]

)

K -periodic sawtooth waveforms similar to (16) can be used as
known control inputs in quantizer systems with > 2, and can
be chosen so that the worst-case information loss grows &s
this case, the existence of multiple quantizer thresholds allows for
reduction of the dynamic range that eacfr] needs to span [2].

_K—l

+ n mod K> , (16)

17)

2x
i B 1
7T (18)

[ere]

LR (x) & 1.4754 <

3.3. Control Inputs in the Presence of Feedback

In this section we develop performance bounds for estimatels of
based ory ™, where the control inpub[r] is a function of all past
quantized observations. In particular, we show that the worst-case
information loss for any feedback-based control input strategy is
lower bounded by theninimumpossible information loss for the
same system withw[r] = 0. As (14) reveals, for anyA| <
A we can obtain information loss equal fi{A,) by selecting
wln] = A, — A. In particular, if there exists a redl, for which
B(A; y) > B(A.; y) for all real A (whereB (A; y) is given by
(9) with « replaced bw), then using (14) and (8) in (4) we obtain
c (A;WN) > L(A;As — A) = L(AL) (19)

with equality achieved fow[n] = A. — A,1 < n < N, where
L(A) is given by (4), and3 (A; y) by (9) with o replaced by.

The minimum information loss from (19) decreases as the
number of quantization levels increases; as expected, ) tends
to zero asM approaches infinity for any sensor noise [2].

For the symmetric two-level quantizer in Gaussian noise, use
of (9) for o = o, in (4) reveals thatt, = 0 and

s

c (A;WN) > £(0) =2 (20)



partial derivative ofn P (y'; A) with respect to4, viz,,

45
L 7 N K N
® Y Awe (y4) = ~1a (cra Q! (%)) . (22)
351 no control — pseud?—rlloise - // ]
Bl ool | whereQ™" (-) is the inverse of) (), Kv; (y") denotes the num-
E 7 ber of elements iy that are equal t&;, and
& 25 e E
é 20+ /7 ’ periodic 1 — K |CL‘| S A
g 7 control = -~ Za (x) { Asgn(z) otherwise (23)
Sl e i
£ Although the ML estimate (22) is asymptotically efficient in the
100 e . sense that its MSE converges to the associated @r&ad bound
.~ - approximation (9) for large enougt, convergence in not uniform id [2].
5 bound (achievalfle by feedback) | For systems withM/ > 2, (21) can be obtained via an EM
. o ST ST algorithm; by usinge[r] = A + a[n] as the complete data we
” 710 ° Peak SNR X (in dB) “ * ® obtain [2]
~ N M . KC (yN) B(k) _ bgn)
Figure 2: Worst-Case information loss ovet| < A for a two- AR =T, [A) 4> T2 et —| (24)
level quantizer in Gaussian noise of variaace for various con- — V2T N Q(é,(n_)l)—Q(ér(n))

trol strategies. The dotted curve depicts (18). The lower dashed A
line depicts the minimum possible information loss¥ dB). initialized with Afm\),[ = 0, wherez{y) = (Xm — Agkl\)/[)/aa, and
2 (k

8% = exp ( [z /2) Provided that the likelihood function
Fig. 2 depicts the worst-case information loss of the two-level y,aq ot possess multiple local minima, we hdyg, (y A)

quantizer in Gaussian noise for the control input scenarios that (k) S (8)

we have examined. As the figure reflects, the performance of thell™s—eo Ay - Empirical evidence suggests thiai x— oo Apy is

control-free system (solid curve) degrades rapidiy dscreases. &S0 asymptotically efficient.

The benefits of pseudo-noise control inputs (upper dashed curve)

at high peak SNR are clearly evident, and known periodic con- 4.2. Control Inputs in the Presence of Feedback

trol inputs provide adéional performance benefits (middle dashed The analysis of Sec. 3.3 suggests viable control input selection

CIfJfrve)dgvelr( FrSﬁ;J?ho-nmSﬁtfzonc}rol tlnptutts.t thalrz,r 'Inir:hetptrﬁsen?emethods based on past quantized observations. For instance, for

orteeghbackiro € quantized output [0 fhe Controt N, e Per- . . system withl\/ = 2 we may selectv[n] = —A[n — 1], where

formance is lower bounded by the minimum possible information .~ =7 . i N

loss of approximatelg dB from (20), which is independent gf. A[’?] IS any cor_13|stent estimate ﬂfpaspd ory”, such as the ML
estimate. In this case, the ML estimateir,[r] of A based ory™

can be obtained using the following EM algorithm [2],

(z <k>[m;n1)2>
We next outline controkiput selection methods and associated es- A(k+1)[ 1=7a Al Zavy exp< ?
timators which achieve the performance limits developed in Sec. 3, = M Enln =27 n Qylm] 2*[m;n])
for the Gaussian noise scenario in the context of pseudo-noise and
feedback-based control inputs. Estimators for known control in- . . .
puts as well as extensions to the nonGaussian case are developatfith Ay [n] = Anw[n — 1] and A, [0] = 0, WhereAML[ 1=

4. EFFICIENT ESTIMATION

(25)

in [2]. A natural measure of performance for a specific system limy_; .o A% [n], andz™ [m; n] = (Apw[m — 1]— AL, [n]) /o
comprising a control input, a quantizer and an estimator iMBE Empirical evidence suggests that (25) achieves the bound (20) for
loss which we define as the ratio of the actual MSE of this esti- moderateV. Algorithms that achieve this bound, but require sig-
mator of A based on observation ¢, divided by B (A; sN). nificantly fewer computations than (25), are developed in [2], as

Analogously toL.,.x in (4), the worst-case MSE loss of an esti- are extensions for systems witlf > 2 and any sensor noise.
mator is defined as the supremum of the MSE loss pter A.
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whereln P (y™; 8) is the associated log-likelihood function.
If F(-)is the symmetric two-level quantizer and sinde] is
Gaussian, (21) can be found in closed form, byiisg to zero the



