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ABSTRACT

The aspects of using a general amplitude probability
density function in coherent detectors are investigated.
For this purpose, the recently developed Generalised
Bessel function K (GBK) distribution is used. The
performance of the optimal detector of signals embed-
ded in GBK-distributed interference is compared to the
one of the uniformly most powerful invariant detector
using extensive Monte Carlo simulations. The results
indicate that for small number of integrated pulses the
optimal detector outperforms the uniformly most pow-
erful invariant detector by up to 18 dB. It is shown,
that this improvement does not vary signi�cantly with
changes in the parameters that control the spherical
invariance of the GBK distribution.

1. INTRODUCTION

The generalised Bessel function K (GBK) distribution
has been introduced recently for modelling physical
phenomena such as radar clutter [4].

The GBK distribution is a four-parameter distribu-
tion which encompasses a large number of well-known
distribution often used in modelling the amplitude pdf
of narrow-band random processes such as the Rayleigh,
Weibull, and K-distribution.

It has also been established that the design of a co-
herent detector for deterministic signals with unknown
amplitude and phase embedded in GBK-distributed in-
terference can be simpli�ed when the interference is
modelled by a spherically invariant random process [5].
Such a detector possesses an important feature of hav-
ing the same structure for all spherically invariant mod-
els included in the GBK distribution. It is also ex-
pected that such a detection system will perform bet-
ter than systems designed for more speci�c models in
situations where the interference statistics change from
time to time or from location to location in such an ex-
tent that they cannot be modelled by a simpler, say
two-parameter, distribution.

The problem of detecting signals in spherically in-
variant interference can be posed as a problem of de-
tecting signals in a conditionally Gaussian process. De-
note a nonnegative random variable by S with proba-
bility density function (pdf) fS(s). Let

~Z = S ~X = S(XI + jXQ) = ZI + jZQ

where subscripts I and Q refer to the inphase and the
quadrature components of the process, respectively, and
X = [XI ;XQ] is a zero-mean Gaussian vector valued
random variable independent of S. Consequently, the
vector Z = [ZI ;ZQ] is called a spherically invariant
random vector [6, 1].

To solve the problem of detecting signals embedded
in Z one may choose to estimate the parameters of
the amplitude pdf fS(s) (if its form is known) and the
covariance matrix of the Gaussian process and design
an optimal detector in the Neyman-Pearson sense (see,
for example [2, 5]).

Another method is to treat S as an unknown (nui-
sance) parameter and consider the classical solution of
a uniform most powerful invariant (UMPI) detector [7].
It has been shown that for large number of integrated
pulses (greater than 20), there is no advantage to be
gained from using full information on fS(s) [7, 3].

The paper is organised as follows. In the next sec-
tion, the multivariate representation of the GBK distri-
bution is presented. In section 3, the design of an opti-
mal detector for signals embedded in GBK-distributed
interference is considered. In section 4, the perfor-
mance of the optimal detector is compared to the one
of the UMPI detector for a small number of integrated
pulses ranging from 2 to 16. The conclusions are pro-
vided in section 5.



2. THE GBK DISTRIBUTION

The multivariate representation of the GBK distribu-
tion is given by [4]

fZ(z) =
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where

z = [zI1 zI2 � � � zIN zQ1 zQ2 � � � zQN ]T

is a real vector with 2N entries of the observations of
the random process vector Z, �1 > 0, �2 > 0, and
c > 0 are the distribution parameters, K�(�) is the
modi�ed Bessel function of the second kind of order �,
M is the covariance matrix (assumed to be invertible),
k � k is the Euclidean norm,
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and the coe�cients P(N;k) are calculated recurrently

P(N;k) = P(N�1;k) C(N;k) + P(N�1;k�1);
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P(0;0) = 1, P(N;0) = 0, and P(0;k) = 0.
It was established that the theory of spherically in-

variant random vectors can be applied when the inter-
ference amplitude is modelled by the GBK distribution,
having pdf given by
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with the shape parameter �1 and the power parameter
c, such that

C(N;k) � 0; k = 1; : : : ; N � 1: (3)

The GBK distribution given in (2) includes a large
number of well-known statistical distributions such as
Rayleigh (�1 = 0:5; �2 = 1; � = 2�; c = 4) , Weibull
(�1 = 0:5; �2 = 1; � = a21=p; c = 2p), K-distribution
(�1 = 1; �2 = �+1; � = 2a; c = 2) and many others [4].

3. DESIGN OF A DETECTOR

The problem of detecting deterministic signal s = Aej�v

in GBK-distributed interference can be expressed in the
following framework

H0 : r = z

H1 : r = s+ z; (4)

where H0 denotes the null hypothesis, H1 the alterna-
tive hypothesis, and where r = [rI ; rQ], z = [zI ; zQ],
and s = [sI ; sQ], are real vectors with 2N entries rep-
resenting the observations of the received signal, inter-
ference, and deterministic signal, respectively.

One can represent a GBK-distributed variate as
conditionally Gaussian with some modulating variate
s > 0. The so called characteristic probability density

function, fS(s), can be found by solving the following
integral equation [1]
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where fZ(z) is given in (1) and C(N;k) � 0. However,
no closed form expression for fS(s) has been found.
Nevertheless, the knowledge of fS(s) is not necessary
when designing optimal detection structures.

Since the theory of spherically invariant random
vectors can be applied when the clutter amplitude is
modelled by the GBK distribution with certain values
of the parameters �1 and c, one can use a whitening
transformation without penalty, providing that the co-
variance matric M is known. This is due to the fact
that a spherically invariant random vector is closed un-
der a linear transformation [6]. Whitening the received
signal leads to the following framework

H0 : x = n

H1 : x = u+ n; (6)

where x is the whitened version of the received signal
vector r, and n and u represent the whitened versions
of the interference vector z and deterministic signal
vector s, respectively. Note that the whitening trans-
formation does not change the statistical properties of
a parametric detector as long as the interfering process
is spherically invariant.

Since the interfering process is assumed to be a zero-
mean process, the whitened version of the target signal
can be expressed as u = Aej�p, where p, referred to as
the signal pattern, is the whitened version of v.

Optimum detection, in the Neyman-Pearson sense,
of a known signal in GBK-distributed interference, can
be achieved using the log-likelihood ratio test (LLRT).



In our case, the LLRT is given by
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where fN (x) is equivalent in form to fZ(z) given in (1)
but with a unit diagonal covariance matrix, and T is a
suitable threshold that controls the probability of false
alarm. Substituting (1) into (7) yields
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The function g(kxk) given above, is an inherent part of
a system for detecting signals in GBK-distributed inter-
ference. The probability density functions f [�(x)jH0]
and f [�(x)jH1] of the log-likelihood ratio test statis-
tic �(x) under the null hypothesis and the alternative
cannot be derived in closed forms. Thus, in order to
evaluate the performance of the detector, one has to use
the empirical pdfs based on extensive computer simu-
lations.

4. THE LLRT VERSUS UMPI BASED

DETECTOR

As noted in the introduction, the detection of signals
in GBK-distributed interference can be viewed as a de-
tection of signals in conditionally Gaussian interference
with some modulating random variate S > 0. Treat-
ing this modulating variable as an unknown parameter,
the detection problem can be interpreted as one of de-
tecting signals in Gaussian interference with unknown
power. The UMPI decision rule in such a case, after a
whitening transformation is applied, can be expressed
as [7]

�(x) =
jxpH j2
xxH

H1

?

H0

T: (10)

It is known that the detector based on the rule given
in (10) is equivalent to the one given in (8) for large
N . In this work, the performance of both detectors

was studied for small number of integrated pulses rang-
ing from 2 to 16 and for di�erent values of the pa-
rameters �1, �2, �, and c of the GBK distribution.
As an example, Figures 1, 2, and 3, show the perfor-
mance of the LLRT based detector (solid lines) and
the UMPI detector (dashed lines) for di�erent parame-
ters of the GBK distribution and signal-to-noise ratios
ranging from �15 dB to 20 dB.

De�ne the maximum improvement Imax of the LLRT
based detector over the UMPI detector as the maxi-
mum di�erence between the signal-to-noise ratios that
result in the same probability of detection. Extensive
simulations have shown that such de�ned improvement
does not vary signi�cantly when the parameters that
control the property of spherical invariance (�1 and
c) of the GBK distribution are changed. However, the
performance itself of the LLRT based detector depends
on the parameters of the GBK distribution (except
on the scale parameter �) and is mostly a�ected by
changes in the power parameter c. In Table 1, the ceil-
ing values of the maximum improvement are shown for
di�erent number of integrated pulses.

N 2 4 8 16
Imax [dB] 18 8 4 3

Table 1: The maximum improvement of the LLRT
based detector over the UMPI detector for di�erent
number of integrated pulses.
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Figure 1: Performance of the LLRT based detector
(solid lines) and the UMPI detector (dashed lines) for
di�erent number of integrated pulses, PFA = 10�3, and
�1 = 1, �2 = 2, � = 1, and c = 1.
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Figure 2: Performance of the LLRT based detector
(solid lines) and the UMPI detector (dashed lines) for
di�erent number of integrated pulses, PFA = 10�3, and
�1 = 1, �2 = 2, � = 1, and c = 2.

−10 0 10 20
0

0.2

0.4

0.6

0.8

1

SNR [dB]

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

N=2

LLRT
UMPI

−10 0 10 20
0

0.2

0.4

0.6

0.8

1

SNR [dB]

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

N=4

LLRT
UMPI

−10 0 10 20
0

0.2

0.4

0.6

0.8

1

SNR [dB]

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

N=8

LLRT
UMPI

−10 0 10 20
0

0.2

0.4

0.6

0.8

1

SNR [dB]

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

N=16

LLRT
UMPI

Figure 3: Performance of the LLRT based detector
(solid lines) and the UMPI detector (dashed lines) for
di�erent number of integrated pulses, PFA = 10�3, and
�1 = 2, �2 = 2, � = 1, and c = 1.

5. CONCLUSIONS

The detection of signals in GBK-distributed interfer-
ence was considered. The detection scheme described
is limited to the case where the GBK distribution ful�ls
the requirements of spherical invariance. However, this
assumption does not diminish the applicability of the
proposed detection schemes in practice as most physi-

cally derived interference models are in fact spherically
invariant. An important feature of such a detector is
fact that it has the same structure for all spherically
invariant model included in GBK distribution.

The performance of the optimal detection scheme
was compared to the uniformly most powerful invari-
ant detector using extensive Monte Carlo simulations.
It has been established that for small number of in-
tegrated pulses, say up to 8, the improvement of the
LLRT over UMPI can reach up to 18 dB. This im-
provement has been found not to vary signi�cantly with
changes in the parameters of the GBK distribution. For
N � 16 this improvement is negligible for most prac-
tical applications and it is not recommended there to
use the amplitude information at all.
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