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ABSTRACT

This paper presents a new method of designing a beamformer hav-
ing a desired broadband beampattern with focusing capability to
operate at any radial distance from the array origin. An important
consequence of our result is that the beamformer processing can be
factored in to three levels of filtering: (i) beampattern independent
elementary beamformers; (ii) beampattern shape dependent filters;
and (iii) radial zooming filters where a single parameter can be ad-
justed to zoom-focus the array to a desired radial distance from the
array origin. As an illustration the method is applied to the prob-
lem of producing a practical array design that achieves a frequency
invariant beampattern over the frequency range of 1:10.

1. INTRODUCTION

Consider the problem of designing a microphone array for speech
acquisition. Not only does the array requires a narrow main beam,
but it should operate uniformly over a large bandwidth and be able
to cope with nearfield sources. Whilst there has been a deal of
progress in designing broadband arrays, having them operate well
in the nearfield is a challenge. In this paper, we will present a
systematic way of designing nearfield broadband sensor arrays. In
particular, we will explicitly show how to parameterize the filter
coefficients inorder to be able to focus the array to practically any
operating radius from the array origin whilst maintaining a prede-
termined broadband angular specification.

Most of the array processing literature assumes a farfield source
having only plane waves impinging on the sensor array. However
in many practical situations such as microphone arrays in car en-
vironments [1], the source is well within the nearfield. The use of
farfield assumptions to design the beamformer in these situations
can severely degrade the beampattern.

There is little work in the literature on nearfield beamforming.
In [2], time delays were applied to compensate for differing propa-
gation delays due to spherical propagation. However this is only an
approximation and ignores the variation of the magnitude with dis-
tance and angle and assumes a point source. In [3] there was con-
sideration initially for nearfield theoretical development but this
was ignored in the actual array design. A novel technique use-
ful in array design has been recently developed [4]. It is based
on writing the solution to the wave equation in terms of spherical
harmonics and allows a nearfield beampattern specification to be
transformed to the farfield. Well understood farfield designs can
then be used to design the nearfield beamformer. Farfield broad-
band beamforming has been reviewed in [5].

2. THEORY OF ELEMENTARY SHAPE INVARIANT
BEAMPATTERNS

In [4], the nearfield-farfield transformation is obtained by solving
the physical problem governed by the classical wave equation in
the spherical co-ordinate system. Letr denote radial distance,�
and� be the azimuth and elevation angles in our spherical coor-
dinate system. Then a general solution of the wave equation for
engineering applications can be constructed by combination of all
possible modes of the form
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Hankel function of the first kind. We assume that the propagation
speedc is independent of frequency, implyingk is a constant mul-
tiple of frequencyf and throughout this paper we will often refer
tok as “frequency”. By combining modes for all possiblen andm
the general solution to the wave equation in thebeampatternform
is given by
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wheref�mn (k)g is a set of frequency dependent coefficients. From
this point onwards, we refer to (2) as the modal representation of
beampatterns. It has been shown [4] that the�mn (k) coefficients
can be obtain from theanalysisequation:
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Since we can invert the representation (2) via (3) we conclude that
the�mn (k) uniquely represent an arbitrary beampattern.

Using the analysis equation (3), any arbitrary beampattern can
be decomposed in to modes which are characterized by the coef-
ficients�mn (k). These modesEm

n (r; �; �; k) can be factored into
two parts:
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as an elementary beam shape andRn(r; k) is a complex function
parameterized byr andk. Therefore, the shape of the beampattern
is invariant with frequency as well as with distance. Hence we
call these beampatterns Elementary Shape Invariant Beampatterns
(ESIB).

3. BROADBAND CONTINUOUS SENSOR DESIGN

3.1. Elementary Continuous Sensors

In previous sections we have developed a new method for decom-
posing a given beampattern into elementary shape invariant beam-
patterns (ESIBs). As an engineering problem, now we will develop
relevant theory to physically realize these ESIBs using an array of
sensors. Initially we will begin with the concept of acontinuous
sensor, so that an exact relationship between ESIB and aperture
illumination can be developed. Then the illumination function of
the continuous sensor will be approximated by a discrete sensor
array to permit implementation.

In order to be able to completely describe results for different ar-
ray configurations we introduce the notation�(~x; k) for the broad-
band aperture illumination or the response of the aperture at a point
~x and for a frequencyk. Then the response of a continuous sen-
sor to planar waves (i.e., generating from a farfield point source)
impinging from an angle(�; �) is,

b1(~u; k) =
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where the vector~u depends on the dimension of the sensor and its
orientation. For example, in the case of a one dimensional array
aligned toz axis,~u = cos � and~x = z. Equation (5) is a Fourier
transform relating the farfield beampatterns and the aperture illu-
mination for a fixed frequencyk. The inverse Fourier transform
corresponding to (5) is given by
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whereD is the dimension of the array. However, the beampattern
b1(~u; k) is defined only for� 2 [0; �] and� 2 [0; 2�], and so
the integration in (6) must have finite limits. Let~u 2 ( ~u1; ~u2) be
the range of~u corresponding to the physical range of the angles.
In order to establish an exact relationship between the ESIBs and
the aperture illumination function, we write an arbitrary farfield
beampattern in the modal representation (2) as
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wheref�mn (k)g are the decomposition weights. Substituting (7)
in to (6) and rearranging, we obtain the desired relationship as
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We can consider%mn (~x; k) as the elementary aperture illumination
functions corresponding to each�mn (�; �). Note that these elemen-
tary aperture functions are independent of the specific beampattern
and they can be calculated beforehand in a practical situation.

The weights�mn (k) have two interpretations: (i) they decom-
pose the beampatterns (7) to a weighted sum of ESIBs, and (ii)
they construct the aperture illumination (8) as a weighted sum of
elementary aperture illumination functions.

3.2. Nearfield Equivalence

In this section, we generalize the above result for broadband beam-
patterns at any radial distance from the array origin using the
nearfield-farfield transformation technique [4].

Theorem 1 Let c(�; �;k) be an arbitrary broadband beampat-
tern specification. Then the aperture illumination,�(r)(~x; k) of a
continuous sensor which realizes this beampattern at a radiusr
from the sensor origin is given by
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where�mn (k) are the coefficients of the modal equation represen-
tation of the given beampatternc(�; �;k) specified in the farfield.

The proof is given in [6].

3.3. One dimensional Sensor

The broadband array theory developed in the previous section is
sufficiently general to capture quite arbitrary three dimensional
sensor geometries. In an attempt to bring the result into focus and
provide a more concrete presentation of the ideas we examine a
linear sensor aligned withz axis. In this case, the beampattern is
rotationally symmetric with respect to�, and a farfield beampat-
tern can be expressed asb1(�; �; k) = b1(�; k).

The only non-zero components are those for whichm = 0,
which leads to the following simplified set of equations:
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where�n(k)
�
= �0n(k) and%0n(z; k) are the elementary aperture

functions and�(r)(z; k) is the aperture illumination which will
realize the desired response at a radiusr from the array origin.
By evaluating the integral in (9) for this case, we obtain a closed
form expression for the elementary aperture functions for a linear
sensor aligned with thez axis as:
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4. BROADBAND DISCRETE ARRAY DESIGN

4.1. Approximation

Having developed the theory of a general broadband continuous
sensor in terms of elementary aperture functions, we will now de-
scribe the implementation of a broadband array. From this point
onward, we only consider one dimensional sensor arrays, however,
the results can be generalized to higher dimensions. We consider
a double sided array aligned to thez axis.

The continuous aperture distribution described by (12) is not
practical for beamforming with finite number of point sensors. The
problem of obtaining a desired broadband response using a dis-
crete set of sensor locations reduces to a numerical approximation
of the following integral representation, which gives the output
frequency response of the ideal continuous sensor for an arbitrary
signalS(z; k) at frequencyk impinging on the array at positionz
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We follow the approach introduced in [5] to approximate (14) by

~Y (k) =
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wherefzigLi=�L is a set of2L + 1 discrete sensor locations and
gi is a spatial weighting term which is used to account for the
(possibly) nonuniformly spaced sensor locations.

4.2. Beamformer Structure

We can consider�(r)(zi; k) in (15) as the frequency response of
a filter attached to the sensor at pointzi. By combining (12) and
(15) we write,
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The filtersF 0
n(zi; k) depend on the elementary beam shapes and

the position of the sensors. They are given by
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whereJn+ 1
2
(�) is the half odd integer order Bessel function. We

will call Fm
n (zi; k) the elementary filters. As in the case of ESIBs,

these elementary filters are same for all beamformers, thus they
may be useful in developing effective parameterization for adap-
tation of beampatterns. We now demonstrate an important result
regarding the elementary filters as a consequence of (19). Note
that in (19),F 0

n(zi; k) is a symmetric function of spatial variable
zi and of the frequency variablek. Thus, these elementary filters
have adilation property. We state this property as a theorem.
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Figure 1: Block diagram of a general one-dimensional broadband
beamformer

Theorem 2 All elementary filter responsesF 0
n(zi; �) of the same

moden at different sensor locationszi are identical up to a fre-
quency dilation.

With the double-sided one dimensional broadband array as defined
in (16), we are led to a block diagram as shown in Fig. 1.

The proposed general beamformer has three levels of filtering
associated with it. The first level consists of elementary beam-
formers, which are shown inside the dashed-line boxes in the Fig.
1. Each of the elementary beamformers consists of elementary fil-
ters of the same mode which are connected to different sensors but
are related by the dilation property. As a consequence, we have a
set of unique beamformers for each and every moden. The charac-
teristic coefficients�n(k) form the second level of filtering. Since
the�n(k) determine the shape of the beampattern, we call them
Beam Shape Filters. The final set of filtersGn(r; k) are indepen-
dent of sensor locations but dependent on the operating radiusr
and the mode, and from (18) can be simplified to

Gn(r; k) =
(�1)n+1
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wherek0 is an arbitrary chosen nominal frequency. By adjusting
the parameterr in Gn(r; k), the beamformer can be zoomed to a
particular operating radiusr. To highlight this important property
we call the filtersGn(r; k) Radial Zooming Filters. Our general
beamformer structure has three interesting properties: (i) the el-
ementary beamformers are same for all beamformers, (ii) beam
shape filters control the shape of the beampattern and (iii) radial
zooming filters zoom-focus the beamformer to the desired operat-
ing radius. Because of these properties, our design is readily con-
vertible to adaptive implementations, where only the beam shape
filters and radial zooming filters need to be adapted.
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Figure 2: Response of the farfield focussed 25dB Chebyshev
beamformer over 300-3000Hz

4.2.1. Frequency Invariant Beamforming

In this section, we consider the design of frequency invariant
beamformers as a special case of the general beamforming the-
ory developed above. An arbitrary beampattern over an arbitrary
bandwidth can be expressed (in the farfield) by (11). It can be
easily seen from (11) that if there is a sequencef�ng of mode
dependent constants such that

�n(k) =
�n

Rn(1; k)
;

for a range of frequenciesk 2 [kl; ku] � (0;1), then the beam-
pattern is frequency invariant overk 2 [kl; ku]. This simplifies
the general beamformer structure in Fig. 1, and in particular the
productGn(r; k)�n(k) appearing in (16) becomes
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Here, to determine�n, we only need to calculate�n(k) for a nom-
inal frequencyk0 2 [kl; ku].

5. DESIGN EXAMPLE

Suppose we wish to design a broadband beamformer having the
desired design frequency range 300-3000Hz, which is suitable for
speech applications. Let us limit the number of modesN to be 15.
Thus we assume all beampatterns of our interest can be approxi-
mately decomposed to 15 ESIBs. We have designed the first 15
elementary filters according to (19). A double sided array of 41
non-uniformly spaced sensors are located according to [6].

Now we consider an example beampattern which is for a beam-
former having a constant Chebyshev 25dB beampattern over the
desired frequency range. The example chosen is a frequency in-
variant beampattern, although we stress that our design method is
not restricted to frequency invariant beamformers. The frequency
response of the combined filtersGn(r; k)�n(k) are given by (21).

The resulting beamformer is zoomed to the farfield by setting
the parameterr = 100�l in the zooming filterGn(r; k) (Here
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Figure 3: Response of the 25dB Chebyshev beamformer which is
focussed to the nearfield atr = 3�l

�l = 2�
kl

). The response of the beamformer to a farfield source
is given in Fig. 2(a), which is close to the desired response. The
response of the same farfield focussed beamformer to a nearfield
source at a radius3�l is given Fig. 2(b). It is evident from this
figure that the farfield assumption severely degrades the nearfield
performance. Next we zoom-focus the same beamformer to the
nearfield by adjusting the variabler in the zooming filterGn(r; k)
to 3�l. The resulting beamformer is simulated in the nearfield and
we observe an improved response in the Fig. 3(a). For complete-
ness, we find the response of nearfield zoomed beamformer to a
farfield source and show this in Fig. 3(b). This demonstrates that
generally a beamformer designed to operate in farfield does not
perform accordingly in the nearfield, and a nearfield beamformer
will not produce the desired farfield response. However, in our
design, a single parameter can be adjusted to zoom focus a beam-
former to a desired operating radial distance from the array origin.
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