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ABSTRACT

Previously the envelope-constrained filtering problem was
formulated as designing an FIR filter such that the filter’s
L2 norm is minimized subject to the constraint that its re-
sponse to a specified input pulse lies within a prescribed en-
velope. In this paper, we recast this filter design problem as
a frequency-domainL1 optimization problem with time-
domain constraints. Motivations for solving this problem
are given. Then recently developed infinite dimensional lin-
ear programming techniques are used for the design of the
required FIR filter. For illustration, we apply the approach
to a numerical example which deals with the design of an
equalization filter for a digital transmission channel.

1. INTRODUCTION

In signal processing many filter design problems can of-
ten be cast as a constrained optimization problem where the
constraints are defined by the specifications of the filter or
the related output signal. These specifications can arise ei-
ther from practical considerations or from the standards set
by certain regulatory bodies (see, e.g., [4]). In this contribu-
tion, we are concerned with the envelope-constrained (EC)
filtering problem. Our objective is to design an FIR filter
H(!) to process a given input signals(k) which is cor-
rupted by additive random noisen(k), see Fig. 1(a). The
noiseless output (k) is required to fit into a prescribed
pulse shape envelope defined by the lower and upper bound-
aries"�(k) and"+(k), see Fig. 1(b). Previously [6], theL2

optimal envelope-constrained filterwas defined as the fil-
ter which minimizes the output noise power while satisfy-
ing the pulse shape constraints. Assuming that the random
noise is white with constant power spectrum density, it can
be verified that the output noise power is proportional to the
squaredL2 norm of the filter to be designed. Hence theL2

optimal EC filtering problem can be posed as

min kHk2 subject to"�(k) �  (k) � "+(k) (1)

wherek = 0; 1; : : : ;M � 1.
In standards, the performance of a digital link is often

specified in terms of a mask applied to the received signal,
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Figure 1: Envelope-constrained filtering problem: (a) Block
diagram. (b) Pulse shape envelope

[2], [4], [7]. The envelope-constrained filter design prob-
lem is directly applicable and the input signals(k) would
correspond to the test signal specified in the standard.

In this contribution, using the recently developed infi-
nite dimensional linear programming techniques [1], [3], we
shall design an FIR filterH(!) such that itsL1 norm, de-
fined askHk1 = max!2[0;�] jH(!)j, is minimized subject
to the same time-domain constraints as specified in (1).

The use ofL1 norm arises naturally when the power
spectrum of the exogenous input noise is bounded but oth-
erwise unknown, while the use ofL2 norm in the EC fil-
tering problem is relevant when the power spectrum of the
exogenous input noise is known. It can be shown that the
use ofL1 norm offers the most robust design with respect
to the worst case noise scenario, see e.g. [9]. Furthermore,
the simplex algorithm for linear programming is generally
more computationally efficient than the quadratic program-
ming algorithms required for theL2 EC design problem.

2. FILTER DESIGN FORMULATION

The frequency response of anN -tap FIR filter is given by

H(!) =

N�1X
k=0

h(k)e�j!k = hT�(!) ! 2 [0; �] (2)



whereh is a realN � 1 vector containing the impulse re-
sponseh(k), and�(!) a complex vector of basis functions
e�j!k, k = 0; : : : ; N � 1.

The discrete-timeL1 optimal EC filter design problem
can be formulated as follows:

Given an input signals(k), find an FIR filterH(!)which
solves the following constrained optimization problem

min
H

kHk2
1

subject to"�(k) �  (k) � "+(k) (3)

where (k) =
PN�1

i=0 h(i)s(k � i); k = 0; 1; : : : ;M � 1.
Note that compared to theL2 formulation of the EC filtering
problem (1), minimizing the squaredL1 norm of the fil-
ter is equivalent to minimizing the output noise power cor-
responding to the worst case input noisen (see e.g. [9]).
Therefore, in the situation where the power spectrum of the
exogenous input noise is bounded but otherwise unknown,
theL1 formulation of the EC filtering problem is directly
applicable.

In order to obtain a nontrivial solution (i.e.H(!) 6= 0),
we assume that there exists at least onek (0 � k �M � 1)
such that"�(k)"+(k) > 0. Furthermore, we assume that
"+(k) > "�(k); (k = 0; 1; : : :).

We wish to put theL1 optimal EC filter design prob-
lem (3) in a more general setting which may also include a
desired frequency response of the FIR filter designed. For
this purpose we pose the following design criterion

min
h2RN

max
!2


v(!)jHd(!)�H(!)j (4)

subject to "� � Sh � "+ (5)

where
 is a closed subset of the interval[0; �], v(!) a
strictly positive weighting function,Hd(!) the desired com-
plex response,S a convolution matrix, and"� and"+ are
vectors of lower and upper bounds"�(k) and"+(k), re-
spectively. The convolution matrixS is defined so that =
Sh, where is the vector containing the noiseless output
signal (k), k = 0; 1; : : : ;M�1. TheL1 EC design prob-
lem (3) corresponds to the case with
 = [0; �], v(!) = 1
andHd(!) = 0.

According to thereal rotation theorem[5], a magnitude
inequality in the complex plane can be expressed in the fol-
lowing equivalent form.

jzj � � , <
�
zej�

	
� � 8� 2 [0; 2�] (6)

wherez is a complex number,� is a real and positive num-
ber, and<f�g denotes the real part.

By making use of (6), the nonlinear approximation prob-
lem (4)–(5) can be reformulated as the following continuous
semi–infinite linear program8<

:
min �
v(!)<

�
(Hd(!)�H(!)) � ej�

	
� �

Ph � p

(7)

where� is an additional real variable,! 2 
, � 2 [0; 2�],
PT = [ST � ST ] andpT = ["+T � "�T ].

The linear program (7) is called (continous) semi–infinite
since the constraint set is infinite (uncountable) and the num-
ber of variables is finite.

Define the(N +1)� 1 vectorsy (variable) andb (con-
stant) by

y =

�
h

�

�
; b =

�
0

1

�
(8)

where0 is a vector of zeros. Further, let theN � 1 vector
functiona(!; �) and the scalar functionc(!; �) be defined
by

a(!; �) = v(!)<
�
�(!) � ej�

	
(9)

c(!; �) = v(!)<
�
Hd(!) � e

j�
	

(10)

The linear program (7) is now restated in the following
form 8<

:
minbTy�
aT (!; �) 1
�P 0

�
y �

�
c(!; �)
�p

�
(11)

where0 is a2M � 1 vector of zeros.
The filter design problem (4)–(5) can now be compactly

formulated as the following (dual) continuous semi–infinite
linear program

(D)

�
minbTy
AT
�y � c�

(12)

whereAT
� andc� are the rows of the left hand side con-

straint matrix and the elements of the right hand side con-
straint vector in (11), respectively. Here� is an index be-
longing to a closed index setA � R4 which has a one–to–
one correspondence with the constraint rows of (11). The
setA can be constructed as follows. Let� = (!; �; i; l)
wherel = 1 or 2 since there are2 types of constraints in
(11). If l = 1, then(!; �) 2 
 � [0; 2�] and i = 1. If
l = 2, then! = 0, � = 0 andi = 1; : : : ; 2M . The for-
mulation (12) is now in a form which has been thoroughly
investigated [1].

We refer to (12) as the dual formulation since it cor-
responds to the dual of a linear program in standard form
[1, 8].

3. THE SEMI–INFINITE SIMPLEX ALGORITHM

3.1. The Dual Formulations

The primal linear programming formulation corresponding
to (12) is given by

(P)

8<
:

max
R
c�dx�R

A�dx� = b

x� � 0
(13)



where the maximization is with respect to the set of all reg-
ular Borel measuresx� [1]. The formulation (13) is said to
be in standard form.

By introducing the semi–infinite matrix and vector no-
tationsA = (A�), c = (c�), andx = (x�), and with the
interpretation of inner products as in (13), the primal and
dual problem (13) and (12) can now be formulated as

(P)

8<
:

max cTx
Ax = b

x � 0
(D)

�
minbTy
ATy � c

(14)

The notation for the dual pair in (14) is now in the same
form as for finite–dimensional linear programs [8].

The duality theorem for finite–dimensional linear pro-
grams states that ifx andy are feasible for (P) and (D),
respectively, thencTx = bTy iff x is optimal for (P) andy
is optimal for (D), cf. [8]. This condition is also known as
strong duality.

Strong duality does not necessarily hold for semi–infinite
linear programs. Examples can easily be constructed for
which there exists aduality gapbetween the optimal val-
ues of the dual programs in (14), cf. [1]. Fortunately, the
semi–infinite linear program corresponding to theuniform
approximation problem(7) satisfies strong duality. This is
readily proven by applying theorem 4.4c in [1].

The success of the semi-infinite linear programming ap-
proach relies on the property of strong duality, but also on
the equally importantDimensionality Theorem(Theorem
4.8 in [1]). This dimensionality theorem states that if there
is a feasible solution to (P) in (13) with valuez0, then there
is a feasible solution of finite support consisting of at most
N + 1 points which achieves the same value.

The duality theorem enables us to solve the primal (P)
rather than the dual (D) in (14). When the optimum solu-
tion to (P) is obtained we will also be in possession of the
optimum solution to (D). The advantage of this procedure
is that the primal (P) is in standard form for solution by the
simplex algorithm. Furthermore, the dimensionality theo-
rem enables the simplex algorithm to work with finite basic
feasible solutions in very much the same way as in the case
of finite–dimensional linear programming. The problem (P)
is thus much easier to solve than (D).

3.2. The Revised Simplex Algorithm

The revised simplex algorithm works with four basic steps
as described below. The procedure is identical with that
for the finite–dimensional case, and is valid for the infinite–
dimensional case provided that inner products of infinite–
dimensional vectors are given the proper interpretation as
defined above.

Given abasisB = [A�1 ; : : : ;A�m ] where�i 2 A
for i = 1; : : : ;m = N + 1 and a basic feasible solution

xB � 0 satisfyingBxB = b. The dimension ofB andxB
arem�m andm� 1, respectively.

Let the matrixA be partitioned asA = [B N] where
N = (A�) consists of these columns ofA which is not
included inB. Define the corresponding partition of the
vectorscT = [cTB c

T
N ] andxT = [xTB x

T
N ]. The primal cost

is cTx = cTBxB = cTBB
�1b.

The revised simplex algorithm proceeds as follows, cf.
[8].

1. Calculate the dual variables by solvingBTy = cB ,
that isyT = cTBB

�1.
The dual cost isyTb = cTBB

�1b = cTx. If y is fea-
sible for (D) then the current solutionxB is optimal
for (P) according to the duality theorem. Stop.

2. Determine a columnA�0 to enter the basis by choos-
ing an index�0 so thatyTA�0 < c�0 (constraint vio-
lation for (D)). The standard pivoting rule is to choose

�0 = max
�

�
c� � y

TA�

	
(15)

3. Determine a columnA�j to leave the basis by the
ratio test

j = arg min
i:di>0

�
xBi
di

�
(16)

where thexBis are the elements of the basic feasi-
ble solutionxB and thedis are the coordinates of
the entering column in terms of the old basis. Thus,
Bd = A�0 whered = (di).

4. Update the basis matrixB by replacing the column
A�j for A�0 . 2

The representation of the vectorb in the new basis is
given by

B(xB � t � d) + t �A�0 = b (17)

wheret � 0 is the minimum ratio in (16) in step 3 above.
The ratio test ensures that the new basic solution is feasi-
ble, that is,xB � t � d � 0 with equality for at least one
component (j). Thedegeneratecase is whent = 0.

Convergence of the algorithm above is guaranteed [1, 8],
except for the possibility of cycling of degenerate basic so-
lutions (in which caset = 0). However, cycling is a rarely
occurring phenomenon, and there are several well estab-
lished remedies, see e.g. Bland’s rule [8].

Suppose that there are no additional linear constraints
(5) to the problem (4). The column vectorA� is then given
byAT

� = [aT (!; �) 1] and the scalarc� = c(!; �). Using
(15) in step 2 above and the definitions given in (9) and (10),
the explicit relations for the variables(!0; �0) corresponding
to the column entering the basis are given by

!0 = argmax
!2


fv(!)jHd(!)�H(!)jg (18)

�0 = � arg fHd(!
0)�H(!0)g (19)



The relations (18) and (19) are easily extended to include
additional linear constraints as in (11).

The revised simplex algorithm as outlined above assumes
that an initial basic feasible solution to (P) is available. This
is phase two of the two–phase simplex algorithm. In phase
one, a basic feasible solution to (P) is found by solving the
so called artificial minimization problem [8].

4. A DESIGN EXAMPLE

As a numerical example for the proposedL1 EC FIR filter
design procedure we consider the design of an equalization
filter for a digital transmission channel consisting of a coax-
ial cable on which data is transmitted according to the DSX–
3 standard [2, 4]. The design objective is to find an equaliz-
ing filter which takes a sampled impulse response of a coax-
ial cable with a loss of 30 dB at a normalized frequency of
1=T as input and produces an output which lies within the
envelope given by the DSX–3 pulse template [2, 4].

Fig. 2 shows the coaxial cable impulse responses, the
output envelope" and the resulting noiseless output signal
 . The solution corresponds to anL1–design withN = 20
coefficients obtained with the semi–infinite simplex proce-
dure. Fig. 3 shows the resulting frequency response of the
equalizer designed. The frequency response of the corre-
spondingL2–design is included for comparison.
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Figure 2: Input signals (dash–dotted line), specified output
envelope" (solid line) and resulting noiseless output signal
 (dashed line).

5. SUMMARY

The envelope–constrained (EC) filter design problem has
been formulated as a special case of a general frequency
domainL1 optimization problem. The optimization prob-
lem is cast as a semi–infinite linear program which can be
solved by using numerically efficient simplex extension al-
gorithms. A numerical example is included to demonstrate
the efficiency of the design method.
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Figure 3: Resulting frequency response of equalizer for an
L1–design (solid line), and anL2–design (dashed line).
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